Articles

Appliquer des méthodes d'apprentissage machine pour rechercher des défauts ferroviaires (2e partie)

Dans cette deuxième partie, nous allons explorer comment appliquer des méthodes d’apprentissage machine pour rechercher des défauts ferroviaires.

Assurer la sécurité du trafic ferroviaire par l’inspection non destructive des rails

L’inspection non destructive des rails afin de garantir la sécurité des transports ferroviaires est régulièrement effectuée à l’aide de différentes approches et méthodes. L’une des principales approches pour déterminer l’état opérationnel des rails ferroviaires est le test non destructif à ultrasons [1]. Actuellement, la recherche d’images de défauts de rail à l’aide des modèles de défauts reçus est effectuée par un être humain. La réussite du développement d’algorithmes de recherche et de classification des données permet de proposer l’utilisation de méthodes d’apprentissage automatique pour identifier les défauts des rails et réduire la charge de travail des humains en créant des systèmes experts.

La complexité de la création de tels systèmes est décrite dans [1, 3-6, 22] et est due, d’une part, à la variété des images graphiques obtenues lors de l’inspection ultrasonore multicanal des rails, et d’autre part, au petit nombre de copies de données avec des défauts (non équilibrés). Une des possibilités pour créer des systèmes experts dans ce domaine est une approche basée sur la décomposition de la tâche complexe d’analyse du défautogramme multicanal entier en canaux individuels ou en ensembles leur caractérisant les types individuels de défauts. 

L’utilisation d’un système expert pour la recherche et la classification des défauts des rails à l’aide d’un test non destructif à ultrasons peut être une solution efficace pour résoudre le problème. Les systèmes experts peuvent être utilisés pour analyser les données obtenues par ultrasons et fournir une estimation précise et fiable du niveau de sécurité des rails. Les systèmes experts peuvent également être utilisés pour prédire les défauts possibles et leur emplacement sur les rails, ce qui peut aider à améliorer la sécurité des transports ferroviaires.

Les systèmes experts peuvent également être utilisés pour analyser les données obtenues par ultrasons et fournir une estimation précise et fiable du niveau de sécurité des rails. Les systèmes experts peuvent également être utilisés pour prédire les défauts possibles et leur emplacement sur les rails, ce qui peut aider à améliorer la sécurité des transports ferroviaires. Les systèmes experts peuvent également être utilisés pour surveiller le niveau de sécurité des rails et prévenir les accidents ferroviaires. Les systèmes experts peuvent également être utilisés pour surveiller le niveau de sécurité des rails et prévenir les accidents ferroviaires. Les systèmes experts peuvent également être utilisés pour surveiller le niveau de sécurité des rails et prévenir les accidents ferroviaires.

Enfin, les systèmes experts peuvent être utilisés pour améliorer les processus d’inspection non destructive des rails. Les systèmes experts peuvent être utilisés pour automatiser le processus d’inspection non destructive des rails, ce qui permet d’accélérer le processus et d’améliorer la qualité des inspections. Les systèmes experts peuvent également être utilisés pour analyser les données obtenues par ultrasons et fournir une estimation précise et fiable

Source de l’article sur DZONE

Les pièges de l'utilisation de l'IA générale en développement logiciel : un cas pour une approche centrée sur l'humain.

Les développeurs logiciels sont confrontés aux risques liés à l’utilisation de l’intelligence artificielle générale. Une approche centrée sur l’humain est nécessaire pour éviter ces pièges.

## Avec le développement de l’intelligence artificielle générale, elle prend également sa place dans les emplois qui nécessitent des connaissances intellectuelles et de la créativité.

The primary challenge is testing. Testing is a critical step in the software development process, as it ensures that the code is functioning correctly and that the system is performing as expected. However, when it comes to General AI-based systems, testing can be a daunting task. This is because the system’s behavior is not predetermined, but rather determined by its own internal logic and learning algorithms. As such, it is difficult to anticipate how the system will behave in a given situation, making it difficult to test for potential bugs and errors.

Avec le développement de l’intelligence artificielle générale, elle prend également sa place dans les emplois qui nécessitent des connaissances intellectuelles et de la créativité. Dans le domaine du développement logiciel, l’idée d’utiliser les capacités cognitives de l’IA générale a suscité un intérêt considérable. L’idée d’un logiciel qui peut penser, apprendre et s’adapter comme un programmeur humain est séduisante et promet de rationaliser les processus de développement et de potentiellement révolutionner l’industrie. Cependant, sous le charme de surface se trouve un défi important : la difficulté de modifier les systèmes basés sur l’IA générale une fois qu’ils sont déployés.

L’IA générale, également connue sous le nom d’intelligence artificielle générale (AGI), incarne le concept des machines possédant une intelligence et une adaptabilité humaines. Dans le monde du développement logiciel, elle a le potentiel d’automatiser une multitude de tâches, allant du codage au débogage. Néanmoins, à mesure que nous plongeons dans les promesses et les périls de l’intégration de l’IA générale dans le processus de développement logiciel, une série de préoccupations et de défis critiques se présentent.

Le défi principal est le test. Le test est une étape essentielle du processus de développement logiciel, car il garantit que le code fonctionne correctement et que le système se comporte comme prévu. Cependant, lorsqu’il s’agit des systèmes basés sur l’IA générale, le test peut être une tâche redoutable. Cela est dû au fait que le comportement du système n’est pas prédéterminé, mais déterminé par sa propre logique interne et ses algorithmes d’apprentissage. Par conséquent, il est difficile de prévoir comment le système se comportera dans une situation donnée, ce qui rend difficile le test des bogues et des erreurs potentiels.

Source de l’article sur DZONE

Alternatives à GitHub pour les projets d'apprentissage machine.

GitHub est un outil très populaire pour le développement de projets, mais il existe d’autres alternatives pour les projets d’apprentissage machine. Découvrez-les ici!

Alternatives populaires à GitHub pour les projets d’apprentissage automatique

2. GitLab (gitlab.com)

GitLab is an all-in-one platform that offers a wide range of features, including code review, issue tracking, and project management. It is an ideal choice for those who are looking for a comprehensive solution for their machine learning projects. It also provides an integrated CI/CD pipeline to automate the process of building, testing, and deploying ML models. Moreover, it offers a robust security system to ensure that your data remains safe and secure.

3. Bitbucket (bitbucket.org)

Bitbucket is another popular platform for managing machine learning projects. It is a great choice for teams that are looking for a powerful yet simple solution to manage their projects. It provides a comprehensive set of features, including code review, issue tracking, and project management. Additionally, it offers an integrated CI/CD pipeline to automate the process of building, testing, and deploying ML models.

Dans le monde technologique en constante évolution, la recherche continue de plateformes efficaces pour rationaliser les projets d’apprentissage automatique est toujours persistante. Il est indéniable que GitHub a ouvert un chemin facile pour les développeurs du monde entier. Cependant, nous comprenons la nécessité de la diversité et de l’innovation dans ce domaine. C’est pourquoi nous vous présentons les meilleures alternatives à GitHub qui peuvent révolutionner votre approche des projets d’apprentissage automatique. Plongeons-nous dans certaines de ces plateformes qui offrent des fonctionnalités et des fonctionnalités robustes qui peuvent facilement donner à GitHub un combat.

Alternatives populaires à GitHub pour les projets d’apprentissage automatique

1. DVC (dvc.org)

Le contrôle de version des données (DVC) est un puissant outil permettant une gestion et une collaboration rationalisées des projets. Fondamentalement, il simplifie la gestion des données en s’intégrant étroitement à Git, ce qui permet de suivre les modifications des données et des modèles de manière méticuleuse, similaire à la façon dont Git suit les variations du code. Cela favorise une approche plus organisée pour gérer de grands jeux de données et apporte un plus grand degré de reproductibilité, car les membres d’équipe peuvent facilement revenir aux versions précédentes si nécessaire.

2. GitLab (gitlab.com

Source de l’article sur DZONE

Apprendre le développement logiciel sans diplôme

Apprendre le développement logiciel sans diplôme est possible ! Avec des ressources en ligne, des tutoriels et des communautés de développeurs, vous pouvez acquérir les compétences nécessaires pour devenir un développeur logiciel.

Le développement de logiciels est devenu l’une des compétences les plus recherchées

Learn the Architecture of Software Development

Once you have a basic understanding of programming languages, it is time to learn about software development architecture. This includes learning about the different components of a software system, such as databases, user interfaces, and APIs. You should also understand the different types of software development models, such as Waterfall, Agile, and DevOps. Understanding the architecture of software development will help you make informed decisions when designing and building software systems.

Gain Practical Experience

The best way to learn software development is to gain practical experience. You can start by building small projects and gradually increase the complexity. You can also participate in open-source projects or join online coding challenges. Working on real-world projects will help you understand the nuances of software development and gain valuable insights into the industry.

Comprendre les bases

Le développement de logiciels est devenu l’une des compétences les plus recherchées. La demande de développeurs de logiciels qualifiés continue de croître et de nombreux candidats ambitieux sont impatients d’apprendre cette compétence, même s’ils n’ont pas de diplôme en informatique ou dans un domaine connexe. Si vous êtes passionné par le développement de logiciels et que vous vous demandez comment vous y prendre sans diplôme, cet article est là pour vous guider. Nous allons explorer diverses stratégies et ressources qui peuvent vous aider à entreprendre un voyage réussi dans le monde du développement de logiciels.

Apprendre l’architecture du développement de logiciels

Une fois que vous avez une compréhension de base des langages de programmation, il est temps d’apprendre l’architecture du développement de logiciels. Cela inclut l’apprentissage des différents composants d’un système logiciel, tels que les bases de données, les interfaces utilisateur et les API. Vous devriez également comprendre les différents types de modèles de développement de logiciels, tels que Waterfall, Agile et DevOps. Comprendre l’architecture du développement de logiciels vous aidera à prendre des décisions éclairées lors de la conception et de la construction de systèmes logiciels.

Gagner une expérience pratique

La meilleure façon d’apprendre le développement de logiciels est de gagner une expérience pratique. Vous pouvez commencer par créer de petits projets et augmenter progressivement la complexité. Vous pouvez également participer à des projets open source ou rejoindre des défis de codage en ligne. Travailler sur des projets réels vous aidera à comprendre les subtilités du développement de logiciels et à acquérir des connaissances précieuses sur l’industrie.

Source de l’article sur DZONE

L'IA et l'IA générative : le voyage et le fonctionnement.

L’IA et l’IA générative sont des technologies qui offrent de nouvelles possibilités de voyage et de fonctionnement. Découvrons ensemble leurs avantages et leurs limites.

Ces dernières années, les technologies et services de pointe ont considérablement changé leurs directions, dynamiques et cas d’utilisation. Il est clair que la dernière vague d’adoption technologique mondiale par les industries est submergée par l’intelligence artificielle (IA) et ses différentes formes. L’IA s’intègre de plus en plus dans le tissu de notre vie quotidienne, changeant la façon dont nous vivons et travaillons. Cet article discute des bases de l’IA / ML, de son utilisation, de l’évolution de l’IA générative, de l’ingénierie prompte et de LangChain.

Machine Learning (ML) is a subset of AI that uses algorithms to learn from data and make predictions. ML algorithms are used to identify patterns in large datasets and then use those patterns to make predictions about future data. ML algorithms can be used to identify customer preferences, detect fraud, and recommend products.

L’intelligence artificielle et l’apprentissage automatique

L’intelligence artificielle (IA) est la capacité de simuler l’intelligence humaine et les processus de pensée tels que l’apprentissage et la résolution de problèmes. Il peut effectuer des tâches complexes qui historiquement ne pouvaient être effectuées que par des humains. Grâce à l’IA, un système non humain utilise des approches mathématiques et logiques pour simuler la raisonnement que les gens utilisent pour apprendre de nouvelles informations et prendre des décisions.

L’apprentissage automatique (ML) est un sous-ensemble de l’IA qui utilise des algorithmes pour apprendre des données et effectuer des prédictions. Les algorithmes d’apprentissage automatique sont utilisés pour identifier des modèles dans de grands ensembles de données et ensuite utiliser ces modèles pour effectuer des prédictions sur des données futures. Les algorithmes d’apprentissage automatique peuvent être utilisés pour identifier les préférences des clients, détecter la fraude et recommander des produits.

L’évolution de l’intelligence générative et le LangChain

L’intelligence générative (GI) est une forme avancée d’IA qui permet aux systèmes informatiques d’apprendre à partir de données et de générer des résultats sans être explicitement programmés pour le faire. Les systèmes GI peuvent apprendre à partir de données complexes et générer des résultats qui peuvent être utilisés pour prendre des décisions ou même créer des produits. Les systèmes GI sont utilisés pour la recherche, le développement de produits, la prise de décision et la gestion des bases de données.

Le LangChain est une technologie basée sur l’IA qui permet aux systèmes informatiques d’analyser les données textuelles et de les transformer en informations utiles. Le LangChain peut être utilisé pour extraire des informations à partir de documents, d’articles, de messages et même de conversations. Il peut également être utilisé pour générer des rapports, des recommandations et des prédictions basés sur les données textuelles.

En conclusion, l’IA et l’apprentissage automatique sont en train de révolutionner le monde numérique. Les technologies telles que l’intelligence générative et le LangChain offrent aux entreprises une variété de possibilités pour tirer parti des données et améliorer leurs opérations. Ces technologies sont en train de transformer radicalement la manière dont les entreprises interagissent avec leurs clients et leurs bases de données.

Source de l’article sur DZONE

Astuces efficaces pour déboguer du code complexe en Java

Déboguer du code complexe en Java peut être un défi. Découvrez ici quelques astuces efficaces pour vous aider à résoudre vos problèmes rapidement.

Déboguer du code complexe en Java est une compétence essentielle pour chaque développeur

Using a debugger can help you quickly identify and isolate the root cause of an issue. For example, if you suspect that a particular method is causing an exception, you can set a breakpoint at the beginning of the method and step through it until the exception occurs. This will help you pinpoint the exact line of code that’s causing the problem.

2. Logging

Logging is another essential tool for debugging Java code. By adding log statements to your code, you can track the flow of execution and pinpoint the source of an issue. Logging is also useful for tracking down problems in production environments, as it allows you to collect data without having to manually debug the code.

When logging, it’s important to be selective about what information you log. Too much information can make it difficult to find the root cause of an issue, while too little information can make it impossible to identify the source of the problem. As a general rule, it’s best to log only the data that is necessary to diagnose an issue.

3. Unit Testing

Unit testing is another effective strategy for debugging complex Java code. By writing unit tests for each component of your application, you can quickly identify and isolate any issues that arise. Unit tests also provide a valuable safety net, as they allow you to catch bugs before they reach production.

When writing unit tests, it’s important to focus on testing the behavior of your code rather than its implementation. This will help ensure that your tests are robust and reliable, and will also make them easier to maintain over time.

En déboguant du code complexe en Java, il est essentiel d’avoir les bonnes compétences pour chaque développeur. À mesure que les projets grandissent en taille et en complexité, la probabilité de rencontrer des bogues et des problèmes augmente. Cependant, le débogage ne consiste pas seulement à corriger les problèmes ; c’est également une expérience d’apprentissage précieuse qui améliore vos compétences en codage. Dans cet article, nous explorerons des stratégies et des techniques efficaces pour déboguer du code Java complexe, ainsi que des exemples pratiques pour illustrer chaque point.

1. Utiliser un débogueur

L’un des outils les plus fondamentaux pour le débogage en Java est le débogueur. Les environnements de développement intégrés modernes (IDE) tels qu’IntelliJ IDEA, Eclipse et NetBeans fournissent des fonctionnalités de débogage puissantes qui vous permettent de définir des points d’arrêt, d’inspecter des variables et de parcourir votre code ligne par ligne.

L’utilisation d’un débogueur peut vous aider à identifier et à isoler rapidement la cause racine d’un problème. Par exemple, si vous soupçonnez qu’une méthode particulière provoque une exception, vous pouvez définir un point d’arrêt au début de la méthode et le parcourir jusqu’à ce que l’exception se produise. Cela vous aidera à repérer la ligne exacte de code qui est à l’origine du problème.

2. Journalisation

La journalisation est un autre outil essentiel pour le débogage de code Java. En ajoutant des instructions de journalisation à votre code, vous pouvez suivre le flux d’exécution et repérer la source d’un problème. La journalisation est également utile pour localiser les problèmes dans les environnements de production, car elle vous permet de collecter des données sans avoir à déboguer manuellement le code.

<

Source de l’article sur DZONE

Optimisation des lignes d'objet d'email et mobile avec AI et ML

Les entreprises peuvent désormais optimiser leurs lignes d’objet d’email et mobile grâce à l’intelligence artificielle et au machine learning. Une nouvelle ère de marketing commence !

Méthodologie

Architecture

La ligne d’objet et les titres des e-mails et des notifications push jouent un rôle important dans la détermination des taux d’engagement. La communication numérique nécessite la compétence de la conception de lignes d’objet convaincantes et de titres de notifications push concis qui captent l’attention de l’utilisateur. Les marketeurs conçoivent des lignes d’objet en fonction du ton du message à transmettre et du public cible visé. En «enseignant» efficacement cette compétence et en l’optimisant pour la communication numérique, les modèles d’IA générative offrent une avenue passionnante pour automatiser ce processus. L’article examine quelques approches pour créer des lignes d’objet et des titres de notifications push efficaces tout en les combinant avec des modèles classiques d’apprentissage automatique pour prédire les taux d’ouverture avec l’IA générative (Large Language Models).

Il ne s’agit pas seulement de créer des lignes d’objet accrocheuses que les LLM peuvent facilement générer avec le bon déclencheur. L’objectif est de générer un candidat idéal pour le contexte et le contenu qui incitera le destinataire à cliquer et à afficher le message. Les modèles d’apprentissage machine (ML), en particulier les algorithmes de forêt aléatoire, peuvent prédire avec une grande confiance la probabilité qu’un destinataire clique sur un message s’ils sont correctement formés. En combinant les LLM avec des modèles ML prédictifs, il est possible de générer des lignes d’objet et des titres de notifications push de haute qualité. Voici quelques moyens possibles.

La première approche consiste à entraîner un modèle ML prédictif sur un jeu de données historiques. Le modèle apprend à prédire le taux d’ouverture en fonction des caractéristiques telles que le sujet, le contenu et le public cible. Une fois le modèle formé, il peut être utilisé pour générer des lignes d’objet et des titres de notifications push optimaux pour chaque message. La seconde approche consiste à entraîner un modèle ML prédictif sur un jeu de données historiques tout en utilisant un modèle LLM pour générer des lignes d’objet et des titres de notifications push. Le modèle ML apprend à prédire le taux d’ouverture en fonction des caractéristiques telles que le sujet, le contenu et le public cible, tandis que le modèle LLM génère des lignes d’objet et des titres de notifications push optimaux pour chaque message. Enfin, la troisième approche consiste à entraîner un modèle ML prédictif sur un jeu de données historiques tout en utilisant un modèle LLM pour générer des lignes d’objet et des titres de notifications push optimaux pour chaque message. Le modèle ML apprend à prédire le taux d’ouverture en fonction des caractéristiques telles que le sujet, le contenu et le public cible, tandis que le modèle LLM génère des lignes d’objet et des titres de notifications

Source de l’article sur DZONE

Apprentissage profond en reconnaissance d'images: Techniques et défis

L’apprentissage profond en reconnaissance d’images est une technologie puissante qui permet de résoudre des problèmes complexes. Découvrez les techniques et les défis associés à cette technologie.

Dans le vaste royaume de l’intelligence artificielle, l’apprentissage profond est devenu un jeu-changer, en particulier dans le domaine de la reconnaissance d’images. La capacité des machines à reconnaître et à catégoriser des images, à la manière du cerveau humain, a ouvert une multitude d’opportunités et de défis. Plongeons-nous dans les techniques que l’apprentissage profond offre pour la reconnaissance d’images et les obstacles qui y sont associés.

Data: For CNNs to work, large amounts of data are required. The more data that is available, the more accurate the results will be. This is because the network needs to be trained on a variety of images, so it can learn to recognize patterns and distinguish between different objects.

Hurdles: The main challenge with CNNs is that they require a lot of data and computing power. This can be expensive and time-consuming, and it can also lead to overfitting if not enough data is available. Additionally, CNNs are not able to generalize well, meaning they are not able to recognize objects that they have not been trained on.

Réseaux de neurones convolutionnels (CNN)

Technique : Les CNN sont le pilier des systèmes de reconnaissance d’images modernes. Ils se composent de plusieurs couches de petites collections de neurones qui traitent des parties de l’image d’entrée, appelées champs réceptifs. Les résultats de ces collections sont ensuite assemblés de manière à se chevaucher, afin d’obtenir une meilleure représentation de l’image d’origine ; c’est une caractéristique distinctive des CNN.

Données : Pour que les CNN fonctionnent, des quantités importantes de données sont nécessaires. Plus il y a de données disponibles, plus les résultats seront précis. C’est parce que le réseau doit être formé sur une variété d’images, afin qu’il puisse apprendre à reconnaître des modèles et à distinguer différents objets.

Hurdles : Le principal défi avec les CNN est qu’ils nécessitent beaucoup de données et de puissance de calcul. Cela peut être coûteux et prendre du temps, et cela peut également entraîner un surajustement si pas assez de données sont disponibles. De plus, les CNN ne sont pas en mesure de généraliser bien, ce qui signifie qu’ils ne sont pas en mesure de reconnaître des objets qu’ils n’ont pas été formés.

Réseaux neuronaux profonds (DNN)

Technique : Les DNN sont une variante des CNN qui peuvent être utilisés pour la reconnaissance d’images. Ils sont constitués de plusieurs couches de neurones qui traitent des parties de l’image d’entrée et produisent des résultats plus précis que les CNN. Les DNN peuvent également être utilisés pour la classification d’images et la segmentation d’images.

Données : Les DNN nécessitent également des grandes quantités de données pour fonctionner correctement. Cependant, ils peuvent être entraînés sur des jeux de données plus petits que les CNN et peuvent donc être plus efficaces lorsqu’il n’y a pas assez de données disponibles.

Hurdles : Le principal défi avec les DNN est qu’ils nécessitent beaucoup de temps et de puissance de calcul pour être entraînés correctement. De plus, ils sont sensibles aux bruit et aux variations dans les données d’entrée, ce qui peut entraîner des résultats imprécis.

Source de l’article sur DZONE

Révolutionner l'IA: Dévoiler le pouvoir de WatsonX

Avec WatsonX, nous pouvons révolutionner l’IA et découvrir de nouvelles possibilités pour le futur.

L’origine de WatsonX

At its core, WatsonX is designed to be a powerful tool for data scientists and developers. It’s capable of ingesting massive amounts of data, analyzing it in real-time, and producing actionable insights that can be used to make better decisions. In addition, WatsonX is designed to be highly scalable, allowing it to handle large volumes of data with ease.

Les origines de WatsonX

Dans le paysage en constante évolution de l’intelligence artificielle, un nouveau joueur est apparu pour redéfinir les limites de ce qui est possible. Entrez WatsonX, une technologie révolutionnaire qui promet de révolutionner le paysage de l’IA. Dans ce blog, nous plongerons profondément dans les intrications de WatsonX, explorerons des exemples captivants et dévoilerons les cas d’utilisation potentiels qui peuvent vraiment le rendre viral.

Derivé de l’iconique Watson AI, qui a célèbrement battu des champions humains dans Jeopardy !, WatsonX représente le point culminant de plusieurs années de recherche, de développement et de progrès. Né de la fusion d’apprentissage machine avancé, de traitement du langage naturel et d’informatique quantique, WatsonX n’est pas seulement une évolution; c’est un bond quantique en avant dans la capacité de l’IA.

Au cœur de WatsonX se trouve un outil puissant conçu pour les scientifiques des données et les développeurs. Il est capable d’ingérer des masses de données, de les analyser en temps réel et de produire des informations exploitables qui peuvent être utilisées pour prendre de meilleures décisions. De plus, WatsonX est conçu pour être hautement extensible, ce qui lui permet de gérer facilement de grandes volumes de données.

Source de l’article sur DZONE

Taxonomie des anti-modèles Scrum

La taxonomie des anti-modèles Scrum est une classification des pratiques qui sont contraires à l’approche Scrum. Découvrons comment ces pratiques peuvent nuire à l’efficacité de votre équipe.

TL; DR : Taxonomie des anti-patterns Scrum

TL; DR: Taxonomie des anti-patterns Scrum

Alors que le processus d’édition du Guide des anti-patterns Scrum est sur le point de se terminer, il est temps de passer à l’étape suivante. Le tout nouveau Guide des anti-patterns Scrum offre plus de 180 anti-patterns organisés par rôles, événements, artefacts et engagements. Cependant, le guide ne crée pas une taxonomie d’anti-patterns Scrum de niveau métal ou abstrait. Par conséquent, le guide ne fournit pas de stratégie globale pour contrer ou éviter les anti-patterns Scrum à un niveau personnel, culturel, structurel ou organisationnel. La question est de savoir s’il est possible de créer une telle taxonomie.

Lisez la suite et en apprenez plus sur les premières étapes de la finalisation du grand tableau des anti-patterns Scrum.

La taxonomie des anti-patterns Scrum est un outil précieux pour les développeurs et les équipes qui cherchent à améliorer leur processus de développement et à éviter les erreurs courantes. Une taxonomie des anti-patterns Scrum peut être utilisée pour identifier les problèmes courants et les solutions possibles. Elle peut également être utilisée pour comprendre comment les différents aspects du développement peuvent interagir et affecter le processus global. Une taxonomie des anti-patterns Scrum peut également aider à identifier les bonnes pratiques et à définir des objectifs pour améliorer le processus de développement.

Une taxonomie des anti-patterns Scrum peut être divisée en quatre catégories principales : le code, le processus, l’organisation et la culture. Chaque catégorie peut être divisée en sous-catégories plus spécifiques. Par exemple, la catégorie « code » peut être divisée en sous-catégories telles que le codage, la documentation, la qualité et la sécurité. La catégorie « processus » peut être divisée en sous-catégories telles que la planification, l’estimation, le suivi et la gestion des changements. La catégorie « organisation » peut être divisée en sous-catégories telles que la structure organisationnelle, la communication et la collaboration. Enfin, la catégorie « culture » peut être divisée en sous-catégories telles que l’apprentissage, l’innovation et l’amélioration continue.

Une fois que les différentes catégories et sous-catégories sont identifiées, il est possible de créer une taxonomie des anti-patterns Scrum. Cette taxonomie peut être utilisée pour identifier les problèmes courants et les solutions possibles. Elle peut également être utilisée pour comprendre comment les différents aspects du développement peuvent interagir et affecter le processus global. Enfin, elle peut aider à identifier les bonnes pratiques et à définir des objectifs pour améliorer le processus de développement.

La taxonomie des anti-patterns Scrum est un outil précieux pour les développeurs et les équipes qui cherchent à améliorer leur processus de développement et à éviter les erreurs courantes. En créant une taxonomie des anti-patterns Scrum, il est possible d’identifier les

Source de l’article sur DZONE