Articles

Utiliser l'API CronJob de Kubernetes pour un planning de tâches efficace.

Utilisez l’API CronJob de Kubernetes pour planifier vos tâches de manière efficace et automatique ! Gérez vos tâches avec précision et sans effort.

Prérequis pour l’API CronJob de Kubernetes

La base de données API CronJob de Kubernetes est une fonctionnalité clé pour automatiser les tâches régulières dans un environnement cloud-native. Ce guide vous guide pas à pas à travers les étapes pour utiliser cette API et illustre également des cas d’utilisation pratiques où elle peut être très bénéfique.

Prérequis

  • Un cluster Kubernetes en cours d’exécution (version 1.21 ou ultérieure)
  • Outil de ligne de commande kubectl
  • Connaissances de base sur Kubernetes (Pods, Jobs, CronJobs)

Comprendre l’API CronJob

La ressource CronJob de Kubernetes est conçue pour l’exécution de tâches basées sur le temps. La nouvelle API (batch/v1) apporte des améliorations en matière de fiabilité et de scalabilité.

L’API CronJob de Kubernetes est un moyen pratique et efficace pour automatiser des tâches régulières et périodiques. Les développeurs peuvent définir des tâches à exécuter à intervalles réguliers, à des moments spécifiques ou à des dates spécifiques. Cela permet aux applications de se mettre à jour automatiquement et de rester à jour, ce qui est essentiel pour les applications cloud-native. La nouvelle API (batch/v1) apporte des améliorations en matière de fiabilité et de scalabilité, ce qui permet aux développeurs d’utiliser des clusters Kubernetes plus grands et plus complexes.

Les développeurs peuvent utiliser l’API CronJob pour automatiser des tâches telles que la sauvegarde des bases de données, la mise à jour des applications, la synchronisation des données entre les clusters, l’exécution de tests et bien plus encore. L’API CronJob est très utile pour les applications qui nécessitent une mise à jour régulière ou des tâches qui doivent être exécutées à intervalles réguliers. En outre, l’API permet aux développeurs de surveiller l’état des tâches et d’effectuer des ajustements si nécessaire.

En résumé, l’API CronJob de Kubernetes est un outil pratique et puissant pour automatiser des tâches régulières et périodiques. Les développeurs peuvent définir des tâches à exécuter à intervalles réguliers, à des moments spécifiques ou à des dates spécifiques. La nouvelle API (batch/v1) apporte des améliorations en matière de fiabilité et de scalabilité, ce qui permet aux développeurs d’utiliser des clusters Kubernetes plus grands et plus complexes. Cela permet aux applications de se mettre à jour automatiquement et de rester à jour, ce qui est essentiel pour les applications cloud-native. Les développeurs peuvent utiliser l’API CronJob pour automatiser des tâches telles que la sauvegarde des bases de données, la mise à jour des applications, la synchronisation des données entre les clusters, l’exécution de tests et bien plus encore.

Source de l’article sur DZONE

Systèmes distribués: le split-brain

Les systèmes distribués sont une technologie complexe qui peut présenter des risques, tels que le split-brain. Apprenons à mieux comprendre ce phénomène et à le gérer.

Le problème du Split-Brain

Split-brain can be caused by a variety of factors, including network partitions, hardware failures, or software bugs. It can also be triggered by intentional actions, such as when an administrator deliberately isolates a node from the cluster. In any case, the result is the same: two or more isolated groups of nodes, each with its own view of the data.

Real-World Example

A real-world example of split-brain occurred in 2017 when a major outage affected Amazon Web Services’ S3 storage service. The outage was caused by a network partition that split the S3 cluster into two isolated groups. As a result, some requests to the S3 service were routed to one group, while others were routed to the other group. This caused data inconsistency and led to widespread disruption.

The S3 outage serves as a reminder of the importance of testing distributed systems for split-brain scenarios. While it is impossible to completely eliminate the risk of split-brain, it is possible to reduce the impact by designing systems that are resilient to network partitions and other forms of failure.

Best Practices

When designing distributed systems, it is important to consider how the system will handle split-brain scenarios. In some cases, it may be possible to use techniques such as quorum or leader election to minimize the impact of split-brain. However, these techniques should be used with caution, as they can introduce additional complexity and overhead.

In general, the best approach is to design systems that are resilient to network partitions and other forms of failure. This can be achieved by using techniques such as replication, redundancy, and fault tolerance. It is also important to test distributed systems for split-brain scenarios before they are deployed in production.

Le problème du Split-Brain

Dans les systèmes distribués, il est essentiel de maintenir une vue cohérente des données sur tous les nœuds pour un fonctionnement correct. Lorsqu’un scénario de split-brain se produit, chaque groupe partitionné peut recevoir des mises à jour différentes, ce qui entraîne une incohérence des données et rend difficile la résolution des conflits lorsque les partitions se reconnectent finalement.

Le split-brain peut être causé par une variété de facteurs, notamment des partitions réseau, des pannes matérielles ou des bogues logiciels. Il peut également être déclenché par des actions intentionnelles, telles que lorsqu’un administrateur isole délibérément un nœud du cluster. Dans tous les cas, le résultat est le même : deux ou plusieurs groupes isolés de nœuds, chacun ayant sa propre vue des données.

Exemple concret

Un exemple concret de split-brain s’est produit en 2017 lorsqu’une panne majeure a affecté le service de stockage S3 d’Amazon Web Services. La panne était causée par une partition réseau qui a divisé le cluster S3 en deux groupes isolés. En conséquence, certaines demandes au service S3 ont été acheminées vers un groupe, tandis

Source de l’article sur DZONE

Validation des messages CDC avec Schemaverse (Partie 4)

Dans cette quatrième partie, nous allons apprendre à valider les messages CDC avec Schemaverse, un outil puissant et facile à utiliser pour la validation des données.

## C’est la partie quatre d’une série de billets de blog sur la construction d’un système moderne à événements avec Memphis.dev.

In this blog post, we will focus on how to use the data captured by Debezium in Memphis.dev to build an event-driven system. We will cover topics such as setting up a data pipeline, creating an event-driven workflow, and deploying the system.

Ceci est la quatrième partie d’une série de billets de blog sur la construction d’un système moderne à événements à l’aide de Memphis.dev.

Dans les deux billets de blog précédents (partie 2 et partie 3), nous avons décrit comment mettre en œuvre une pipeline de capture des données de changement (CDC) pour MongoDB à l’aide de Debezium Server et Memphis.dev.

Dans ce billet de blog, nous nous concentrerons sur la façon d’utiliser les données capturées par Debezium dans Memphis.dev pour construire un système à événements. Nous aborderons des sujets tels que la mise en place d’une pipeline de données, la création d’un flux de travail à événements et le déploiement du système.

Pour commencer, nous devons configurer une pipeline de données pour récupérer les données capturées par Debezium et les envoyer à Memphis.dev. Pour ce faire, nous devons configurer un connecteur Kafka qui envoie les données à un canal Kafka, puis configurer un canal Kafka qui envoie les données à un canal Apache Pulsar. Une fois que la pipeline de données est configurée, nous pouvons commencer à créer des flux de travail à événements basés sur ces données.

Ensuite, nous devons créer un flux de travail à événements qui prend en charge le traitement des données capturées par Debezium. Pour ce faire, nous devons créer un modèle de données qui décrit le schéma des données capturées par Debezium et définir des règles pour le traitement des données. Une fois que le modèle et les règles sont définis, nous pouvons créer un flux de travail à événements qui prend en charge le traitement des données capturées par Debezium.

Enfin, nous devons déployer le système à événements que nous avons construit. Pour ce faire, nous devons déployer le connecteur Kafka et le canal Kafka sur un cluster Kafka, puis déployer le canal Apache Pulsar sur un cluster Pulsar. Une fois que tout est déployé, nous pouvons commencer à envoyer des données capturées par Debezium à notre système à événements et à traiter ces données selon les règles que nous avons définies.

En conclusion, nous avons vu comment utiliser les données capturées par Debezium dans Memphis.dev pour construire un système à événements. Nous avons vu comment configurer une pipeline de données pour récupérer les données capt

Source de l’article sur DZONE

Produire et consommer des messages Avro avec Redpanda Schema Registry

Produire et consommer des messages Avro avec Redpanda Schema Registry est une tâche essentielle pour les applications modernes. Découvrez comment le faire facilement!

Si vous êtes familier avec Apache Kafka®, vous avez peut-être rencontré un registre de schémas compatible avec Kafka – un composant distinct que vous déployez en dehors de votre cluster Kafka, car Kafka n’en a pas intégré. 

Essentiellement, un schéma est une description logique de la façon dont vos données sont organisées, et donc un registre de schémas fournit un référentiel central pour ces schémas, permettant aux producteurs et aux consommateurs d’envoyer et de recevoir des données entre eux de manière transparente. Pour les architectures orientées événements, cela peut devenir complexe et difficile à gérer à mesure que vous évoluez, car les schémas de données peuvent changer et évoluer au fil du temps (pouvant potentiellement tout casser plus tard). 

## Utilisation d’un registre de schémas compatible avec Apache Kafka®

L’architecture Apache Kafka® est bien connue et il est possible de rencontrer un registre de schémas compatible avec Kafka, qui est un composant distinct que l’on déploie en dehors du cluster Kafka, car celui-ci n’en comporte pas.

Essentiellement, un schéma est une description logique de la façon dont vos données sont organisées et un registre de schémas fournit donc un référentiel central pour ces schémas, permettant aux producteurs et aux consommateurs d’envoyer et de recevoir des données entre eux sans heurts. Pour les architectures orientées événements, cela peut devenir complexe et difficile à gérer à mesure que l’on se développe, car les schémas de données peuvent changer et évoluer dans le temps (pouvant potentiellement provoquer des dysfonctionnements plus tard).

Un registre de schémas est donc une solution très pratique pour gérer ce type d’architecture. Il permet aux producteurs et aux consommateurs d’accéder facilement aux schémas des données, ce qui leur permet de s’assurer que les données envoyées et reçues sont cohérentes et conformes. De plus, le registre de schémas permet de conserver l’historique des versions des schémas, ce qui peut être très utile pour le débogage et le développement.

Enfin, le registre de schémas peut également être utilisé pour aider à la validation des données. Les producteurs peuvent envoyer des données à un registre de schémas avant de les envoyer à Kafka, ce qui permet de s’assurer que les données sont conformes aux schémas attendus. De même, les consommateurs peuvent également valider les données reçues avant de les traiter, ce qui permet d’assurer la qualité des données et d’améliorer l’efficacité des processus.

En somme, le registre de schémas est un outil très pratique pour gérer les architectures orientées événements. Il permet aux producteurs et aux consommateurs d’accéder facilement aux schémas des données, ce qui leur permet de s’assurer que les données envoyées et reçues sont cohérentes et conformes. De plus, il permet également d’aider à la validation des données, ce qui permet d’améliorer la qualité et l’efficacité des processus.

Source de l’article sur DZONE

Fargate vs Lambda : Qui sera le vainqueur ?

Fargate et Lambda sont deux technologies très populaires parmi les développeurs cloud. Quel est le meilleur pour votre projet ? Découvrons qui sera le vainqueur !

## Comparaison Fargate vs Lambda dans l’espace sans serveur

Quelles sont les différences entre Fargate et Lambda ?

Fargate et Lambda sont deux options de calcul sans serveur populaires disponibles dans l’écosystème AWS. Bien que les deux outils offrent un calcul sans serveur, ils diffèrent en ce qui concerne les cas d’utilisation, les limites opérationnelles, les allocations de ressources d’exécution, le prix et les performances. Fargate est une moteur de calcul sans serveur proposé par Amazon qui vous permet de gérer efficacement les conteneurs sans les tracas de la mise en provision des serveurs et de l’infrastructure sous-jacente. Lambda, quant à lui, est une plateforme de calcul sans serveur qui vous permet d’exécuter du code sans avoir à gérer des serveurs. Lambda est conçu pour prendre en charge des charges de travail à courtes durées et à faible consommation de ressources.

Quelle est la meilleure option pour l’architecture ?

Lorsqu’il s’agit de choisir entre Fargate et Lambda, il est important de comprendre leurs différences et leurs avantages. Pour les applications à longue durée et à haute consommation de ressources, Fargate est la meilleure option car il offre une gestion des conteneurs plus efficace et une meilleure performance. Cependant, pour les applications à courtes durées et à faible consommation de ressources, Lambda est la meilleure option car il offre une exécution plus rapide et une meilleure utilisation des ressources. En fin de compte, le choix entre Fargate et Lambda dépend des exigences spécifiques de votre application et de votre architecture. Il est important de prendre en compte le coût, la performance et les fonctionnalités avant de prendre une décision finale.

Quelle que soit l’application ou l’architecture que vous souhaitez mettre en place, Fargate et Lambda sont tous deux des outils puissants qui peuvent vous aider à atteindre vos objectifs. En tant qu’informaticien enthousiaste, je trouve que ces outils sont très utiles pour créer des applications modernes et évolutives. Fargate et Lambda offrent tous les deux des fonctionnalités avancées qui peuvent être utilisées pour créer des architectures robustes et flexibles. Les deux outils sont faciles à utiliser et peuvent être intégrés à d’autres services AWS pour offrir une expérience utilisateur optimale. En fin de compte, le choix entre Fargate et Lambda dépendra des exigences spécifiques de votre application et de votre architecture.

Source de l’article sur DZONE

PlatformCréer un client de secours avec Hazelcast Viridian Platform sans serveur

Vous pouvez facilement créer un client de secours avec Hazelcast Viridian Platform sans serveur, ce qui vous permet d’accéder à des données et services à tout moment.

Mise en place d’un client de basculement pour une stratégie de reprise après sinistre

En tant que scientifique informatique enthousiaste, je sais que le failover est une fonctionnalité importante des systèmes qui dépendent d’une disponibilité quasi constante. Dans Hazelcast, un client de failover redirige automatiquement son trafic vers un cluster secondaire lorsque le client ne peut pas se connecter au cluster primaire. Il est conseillé d’utiliser un client de failover avec la réplication WAN comme partie intégrante de votre stratégie de reprise après sinistre. Dans ce tutoriel, vous mettrez à jour le code d’un client Java pour qu’il se connecte automatiquement à un cluster secondaire de failover s’il ne peut pas se connecter à son cluster primaire d’origine. Vous effectuerez également un test simple pour vous assurer que votre configuration est correcte et l’ajusterez ensuite pour inclure la gestion des exceptions. Vous apprendrez comment recueillir toutes les ressources dont vous avez besoin pour créer un client de failover pour un cluster primaire et secondaire, créer un client de failover basé sur le client Java d’exemple, tester le failover et ajouter la gestion des exceptions pour les opérations.

Étape 1: Configurer les clusters et les clients

Créez deux clusters Viridian Serverless que vous utiliserez comme clusters primaires et secondaires, puis téléchargez et connectez des clients Java d’exemple à ceux-ci.

Une fois que vous avez créé les clusters et les clients, vous devez créer une base de données qui contient les informations sur les clusters primaires et secondaires. Cette base de données doit être accessible à partir du client Java afin qu’il puisse accéder aux informations relatives aux clusters primaires et secondaires. Vous pouvez créer cette base de données en utilisant n’importe quel type de base de données relationnelle ou non relationnelle. Une fois que vous avez créé la base de données, vous devez y ajouter les informations sur les clusters primaires et secondaires. Vous pouvez également ajouter des informations supplémentaires telles que l’adresse IP du cluster primaire et secondaire, le port utilisé par le cluster, le nom du cluster, etc.

Une fois que vous avez créé la base de données et ajouté les informations sur les clusters primaires et secondaires, vous pouvez maintenant configurer le client Java pour qu’il puisse accéder à cette base de données et récupérer les informations nécessaires. Pour ce faire, vous devez ajouter le code nécessaire à votre client Java pour qu’il puisse se connecter à la base de données et récupérer les informations nécessaires. Une fois que vous avez terminé cette étape, votre client Java est prêt à être utilisé pour se connecter aux clusters primaires et secondaires.

Source de l’article sur DZONE

Optimisation de clusters GKE: 14 tactiques pour un déploiement K8s plus fluide

Découvrez comment optimiser vos clusters GKE et améliorer la fluidité de votre déploiement K8s grâce à ces 14 tactiques simples !

Comment s’assurer que votre cluster Google Kubernetes Engine est prêt pour les tempêtes à venir ?

Premièrement, l’optimisation de la sécurité. En tant qu’ingénieur informatique enthousiaste, je sais que la sécurité est une priorité absolue. Vous devez donc veiller à ce que votre cluster GKE soit protégé contre les menaces extérieures. Pour ce faire, vous devez configurer la sécurité des nœuds, définir des règles de pare-feu et utiliser des certificats TLS pour vous assurer que votre cluster est sûr et sécurisé. Vous devez également mettre en œuvre des contrôles d’accès et des stratégies de sécurité pour vous assurer que vos données et vos applications sont protégées.

Deuxièmement, l’optimisation de la disponibilité. Pour assurer une disponibilité maximale de votre cluster GKE, vous devez configurer le nombre de nœuds et leurs tailles pour répondre aux exigences de votre application. Vous devez également configurer des réplicas pour vos services et définir des règles de mise à l’échelle pour vous assurer que votre application est toujours disponible. Enfin, vous devez mettre en place des outils de surveillance pour vous assurer que votre cluster est toujours opérationnel.

Enfin, l’optimisation des coûts. Pour optimiser les coûts liés à votre cluster GKE, vous devez configurer le nombre de nœuds et leurs tailles pour répondre aux exigences de votre application. Vous pouvez également utiliser des outils tels que le codage pour réduire les coûts en réutilisant le code existant et en automatisant certaines tâches. Vous pouvez également utiliser des outils tels que Kubernetes pour optimiser les performances et réduire les coûts en répartissant les charges de travail sur plusieurs nœuds.

Source de l’article sur DZONE

When it comes to managing multi-tenancy, there are a number of architectural routes you can take. A couple of the most popular are:

  1. Create a database per tenant.
  2. Use a single database but with tenant IDs to separate out data.

Both of these options have pros and cons, but getting into that is not the intention of this blog. Today we’ll be exploring what option 1 may look like on a single CockroachDB cluster.

Source de l’article sur DZONE

When you’re running a relatively small cluster, you might get away with having no structure in place for it. But with time, your cluster will inevitably scale to dozens of pods and hundreds of containers. If you keep running them carefree, you’ll deal with a mess sooner rather than later. Here’s your golden ticket to get out of this chaos: Kubernetes namespace.

By keeping your cluster organized with namespaces, labels, and annotations, you’ll avoid the performance, maintenance, and security issues that come together in a package with the lack of control over the deployed objects and services.

Source de l’article sur DZONE