Articles

Révision de code sécurisée

La sécurité des systèmes informatiques est une priorité absolue. La révision de code sécurisée est un moyen essentiel pour assurer la sécurité des données et des systèmes.

## Examen de code sécurisé : essentiel pour assurer la sécurité et l’intégrité des applications logicielles

La revue de code sécurisée est essentielle pour assurer la sécurité et l’intégrité des applications logicielles. En examinant la base de code à la recherche de vulnérabilités et de faiblesses potentielles, les développeurs peuvent identifier et traiter les problèmes de sécurité avant que des acteurs malveillants ne les exploitent. Cet article discutera des meilleures pratiques pour mener une revue de code sécurisée complète et efficace.

Définir les exigences de sécurité

Avant de commencer une revue de code, il est essentiel d’établir des exigences de sécurité précises pour l’application. Ces exigences doivent être conformes aux meilleures pratiques et aux normes de conformité pertinentes pour votre projet. En définissant les objectifs et objectifs de sécurité à l’avance, le réviseur peut fournir un cadre pour évaluer le code et identifier les éventuelles lacunes en matière de sécurité.

Analyse de l’architecture

Une fois les exigences de sécurité définies, le réviseur peut passer à l’analyse de l’architecture. Il est important d’examiner la structure globale du code et de comprendre comment les différents composants interagissent entre eux. Cette étape permet au réviseur d’identifier des points faibles potentiels et d’analyser la façon dont les données sensibles sont traitées et stockées. Il est également important de vérifier si l’application respecte les normes de sécurité et les bonnes pratiques en matière d’architecture.

Examen du code source

Une fois que l’architecture a été analysée, le réviseur peut passer à l’examen du code source. Cette étape implique la recherche de vulnérabilités potentielles, telles que les failles d’injection SQL, les failles XSS et les failles de type buffer overflow. Il est également important de vérifier si le code respecte les normes et les bonnes pratiques en matière de codage. Le réviseur peut également rechercher des erreurs logiques ou des erreurs dans le traitement des données sensibles.

Source de l’article sur DZONE

Utiliser les fonctionnalités de prévisualisation JDK21 et/ou les classes incubatrices

Découvrez comment tirer le meilleur parti des fonctionnalités de prévisualisation JDK21 et des classes incubatrices pour améliorer votre code Java.

Comment configurer votre build Maven pour prendre en charge une leçon de jeu avec les nouvelles fonctionnalités de JDK21 (ou même plus récentes) comme les fonctionnalités d’aperçu et peut-être certaines classes de l’incubateur ? C’est plus facile que vous ne le pensez. Commençons la configuration. Je suppose que vous souhaitez jouer avec les fonctionnalités d’aperçu de JDK21, par exemple les modèles de chaînes (JEP430). Je viens de sélectionner ce JEP pour la démonstration. Vous pouvez sélectionner n’importe quel JEP en aperçu. La première chose à savoir est que vous devez activer les fonctionnalités d’aperçu via :

Parfois, vous souhaitez jouer avec les nouvelles fonctionnalités de JDK21 (ou même des JDK plus récents) comme les fonctionnalités de prévisualisation et peut-être certaines classes de l’incubateur. Alors, comment pouvez-vous configurer votre build Maven pour prendre en charge une telle leçon de jeu? C’est plus facile que vous ne le pensez. Commençons la configuration. Mon hypothèse est que vous souhaiteriez jouer avec les fonctionnalités de prévisualisation de JDK21, par exemple les modèles de chaîne (JEP430). Je n’ai sélectionné ce JEP que pour la démonstration. Vous pouvez sélectionner n’importe quel JEP en prévisualisation. La première chose à savoir est que vous devez activer les fonctionnalités de prévisualisation via:

XML

org.apache.maven.plugins

maven-compiler-plugin

true

Une fois cette étape terminée, vous pouvez ajouter des dépendances supplémentaires à votre projet pour prendre en charge les fonctionnalités de prévisualisation. Pour le JEP430, vous devez ajouter la dépendance suivante:

XML

org.openjdk.jmh

jmh-core

1.21.0-SNAPSHOT

test

Une fois cette étape terminée, vous pouvez commencer à utiliser les fonctionnalités de prévisualisation dans votre projet. Vous pouvez également utiliser des outils tels que JMH pour mesurer les performances des fonctionnalités de prévisualisation et comparer leurs performances avec les versions stables. Vous pouvez également utiliser des outils tels que JUnit pour tester le comportement des fonctionnalités de prévisualisation et vous assurer qu’elles fonctionnent comme prévu. Enfin, vous pouvez utiliser des outils tels que SonarQube pour surveiller la qualité du code et vous assurer que les fonctionnalités de prévisualisation ne compromettent pas la qualité du code.

Une fois que vous avez configuré votre projet pour prendre en charge les fonctionnalités de prévisualisation, vous pouvez commencer à explorer les données et à tirer parti des nouvelles fonctionnalités. Vous pouvez par exemple analyser les données pour voir comment les nouvelles fonctionnalités affectent les performances ou la qualité du code. Vous pouvez également utiliser des outils tels que Spark ou Hadoop pour traiter et analyser des jeux de données volumineux et tirer des conclusions sur les performances et la qualité des fonctionnalités de prévisualisation. Vous pouvez même créer des modèles d’apprentissage automatique pour prédire le comportement des n

Source de l’article sur DZONE

Créer une application RESTful avec Quarkus et Eclipse JNoSQL alimentée par MongoDB

Créer une application RESTful moderne et performante avec Quarkus et Eclipse JNoSQL alimentée par MongoDB, c’est possible ! Découvrez comment dans ce tutoriel.

Intégration Facile des Bases de Données NoSQL avec Eclipse JNoSQL et Quarkus

Quarkus est une plate-forme Java open source qui offre une excellente performance et une faible empreinte mémoire. Il est conçu pour être très rapide à démarrer et à s’exécuter, ce qui en fait un excellent choix pour les applications cloud et mobiles. Quarkus est également très intégré avec Eclipse JNoSQL, ce qui permet aux développeurs de bénéficier des avantages des bases de données NoSQL sans avoir à se soucier des configurations complexes.

L’utilisation conjointe de Eclipse JNoSQL et Quarkus est un excellent moyen de simplifier le développement d’applications modernes qui utilisent des bases de données NoSQL. Les développeurs peuvent facilement intégrer des bases de données NoSQL dans leurs applications grâce à l’API standardisée fournie par Eclipse JNoSQL, tout en bénéficiant des performances et de la faible empreinte mémoire offertes par Quarkus. De plus, le framework offre un environnement de test intégré qui permet aux développeurs de tester leurs applications avec différentes bases de données NoSQL sans avoir à effectuer des configurations complexes. Enfin, Eclipse JNoSQL et Quarkus sont entièrement open source et gratuits, ce qui en fait une solution très abordable pour les développeurs.

Dans l’environnement en constante évolution du développement d’applications modernes, l’adoption des bases de données NoSQL a connu une croissance significative en raison de leurs modèles de données flexibles et de leurs avantages en matière d’évolutivité. Cependant, l’intégration transparente des bases de données NoSQL dans une application peut parfois être complexe et nécessiter des connaissances spécialisées et des configurations complexes. C’est là que Eclipse JNoSQL et Quarkus entrent en jeu, deux technologies puissantes qui, lorsqu’elles sont combinées, simplifient le processus d’intégration et permettent aux développeurs d’exploiter facilement les fonctionnalités des bases de données NoSQL. Eclipse JNoSQL est un framework open source qui fournit une API standardisée et des outils pour travailler avec des bases de données NoSQL. Il offre un modèle de programmation unifié qui masque les complexités des différentes bases de données NoSQL, permettant aux développeurs d’écrire du code indépendant de la technologie sous-jacente. JNoSQL prend en charge une large gamme de bases de données NoSQL, notamment MongoDB, Cassandra, Couchbase et plus encore, ce qui en fait un excellent choix pour la construction d’applications flexibles et évolutives.

Quarkus est une plate-forme Java open source qui offre une excellente performance et une faible empreinte mémoire. Il est conçu pour être très rapide à démarrer et à s’exécuter, ce qui en fait un excellent choix pour les applications cloud et mobiles. Quarkus est également très intégré avec Eclipse JNoSQL, ce qui permet aux développeurs de bénéficier des avantages des bases de données NoSQL sans avoir à se soucier des configurations complexes. De plus, Quarkus propose un environnement de test intuitif qui permet aux développeurs de tester leurs applications avec différentes bases de données NoSQL sans avoir à effectuer des configurations complexes.

L’utilisation conjointe de Eclipse JNoSQL et Quarkus est un excellent moyen de simplifier le développement d

Source de l’article sur DZONE

Pratiques de développement pour logiciels de qualité sup.

Le développement de logiciels de qualité supérieure nécessite des pratiques rigoureuses et innovantes. Découvrez comment les mettre en œuvre pour obtenir des résultats optimaux.

Les 10 meilleures pratiques pour développer un logiciel de haute qualité

Premièrement, l’une des pratiques les plus importantes pour le développement de logiciels de qualité est de bien documenter le code. Cela signifie que chaque ligne de code doit être accompagnée d’une explication claire et précise de ce qu’elle fait. Cela permet aux autres développeurs de comprendre facilement le code et d’effectuer des modifications en conséquence. De plus, cela permet aux développeurs de repérer rapidement les erreurs et de les corriger sans perdre du temps.

Deuxièmement, il est important d’effectuer des tests exhaustifs sur le code. Les tests doivent couvrir tous les scénarios possibles et vérifier si le code fonctionne correctement. Les tests doivent également être effectués sur différents systèmes d’exploitation et sur différents navigateurs. Les tests peuvent également être effectués sur des données réelles afin de vérifier si le code fonctionne correctement avec des données réelles.

Enfin, il est important de s’assurer que le logiciel est sûr et conforme aux normes de sécurité. Les développeurs doivent s’assurer que le logiciel est protégé contre les attaques extérieures et que les données des utilisateurs sont protégées. Les développeurs doivent également s’assurer que toutes les données sont stockées et traitées en toute sécurité et que les données ne sont pas compromises. Les développeurs doivent également s’assurer que le logiciel est conforme aux lois et réglementations en vigueur en matière de protection des données.

Source de l’article sur DZONE

Enregistrer des Convertisseurs Spring en étendant son Interface.

En étendant l’interface, vous pouvez enregistrer des convertisseurs Spring pour faciliter la conversion des données entre différents formats.

Cet article est un guide étape par étape visant à démontrer une approche basée sur l’interface pour utiliser le système de conversion de type Spring.

The system is designed to be extensible, allowing developers to add their own custom type converters. In this article, we will demonstrate how to use the type conversion system in an interface-based approach.

Paragraph 1

Le système de conversion de type de Spring 3 introduit un package core.convert qui fournit un système de conversion de type général. Le système définit une SPI pour implémenter la logique de conversion de type et une API pour effectuer des conversions de type à l’exécution. Le système est conçu pour être extensible, ce qui permet aux développeurs d’ajouter leurs propres convertisseurs de type personnalisés. Dans cet article, nous allons démontrer comment utiliser le système de conversion de type dans une approche basée sur l’interface.

Paragraph 2

Le système de conversion de type Spring est basé sur l’interface ConversionService. Cette interface définit les méthodes pour convertir un objet d’un type à un autre. Le système fournit également une implémentation par défaut, DefaultConversionService, qui peut être utilisée pour effectuer des conversions simples. Cependant, si vous avez besoin de plus de contrôle sur la conversion, vous pouvez créer votre propre implémentation de ConversionService.

Paragraph 3

Une fois que vous avez créé votre implémentation de ConversionService, vous pouvez l’utiliser pour effectuer des conversions. Pour cela, vous devez créer une instance de ConversionService et l’utiliser pour convertir des objets d’un type à un autre. Vous pouvez également utiliser le système pour effectuer des tests unitaires sur votre code de conversion. Pour ce faire, vous pouvez créer une instance de ConversionService et l’utiliser pour tester le comportement de votre code de conversion. Vous pouvez également utiliser le système pour tester la précision des conversions effectuées par votre code.

Source de l’article sur DZONE

Guide O11y : Sans observabilité, ce n'est que du code

« Comprendre et améliorer la qualité et la performance de votre code est essentiel. Guide O11y vous aide à atteindre cet objectif en vous fournissant les outils nécessaires pour une observabilité optimale ! »

Bienvenue à un autre chapitre de la série en cours que j’ai commencée pour couvrir mon voyage dans le monde de l’observabilité cloud-native. Si vous avez manqué l’un des articles précédents, revenez à l’introduction pour une mise à jour rapide.

Après avoir établi les bases de cette série dans l’article initial, j’ai passé du temps à partager qui sont les acteurs de l’observabilité, j’ai examiné la discussion en cours autour des piliers de surveillance versus les phases, j’ai partagé mes pensées sur les choix de niveau architectural qui sont faits et j’ai partagé les normes ouvertes disponibles dans le paysage open source. J’ai continué avec quelques-uns des défis architecturaux que vous pourriez rencontrer lorsque des applications monolithiques plus anciennes et des outils de surveillance font toujours partie du paysage d’infrastructure d’une organisation. Enfin, je vous ai guidé à travers le projet de visualisation et de tableau de bord open source appelé Perses en introduisant mon atelier pratique.

Bienvenue à un autre chapitre de la série en cours que j’ai commencée pour couvrir mon voyage dans le monde de l’observabilité cloud-native. Si vous avez manqué l’un des articles précédents, revenez à l’introduction pour une mise à jour rapide.

Après avoir établi les bases de cette série dans l’article initial, j’ai passé du temps à partager qui sont les acteurs de l’observabilité, j’ai regardé la discussion en cours autour des piliers de surveillance versus les phases, j’ai partagé mes pensées sur les choix de niveau architectural qui sont faits et j’ai partagé les standards ouverts disponibles dans le paysage open source. J’ai continué avec quelques-uns des défis architecturaux auxquels vous pourriez être confrontés lorsque des applications monolithiques plus anciennes et des outils de surveillance font toujours partie du paysage d’infrastructure d’une organisation. Enfin, je vous ai guidé à travers le projet de visualisation et de tableau de bord open source appelé Perses en introduisant mon atelier pratique.

Aujourd’hui, je vais parler du logiciel d’observabilité cloud-native que j’utilise pour collecter, stocker et analyser les données. Je vais également partager mon expérience personnelle et mes pensées sur la façon dont je me suis retrouvé à utiliser ce logiciel et ce que je pense qu’il fait bien.

Le logiciel d’observabilité cloud-native que j’utilise est appelé Prometheus. C’est un système open source qui a été créé par SoundCloud pour surveiller leur infrastructure cloud. Il est maintenant maintenu par la communauté open source et est largement utilisé par les entreprises pour surveiller leurs applications et leurs services. Prometheus est conçu pour collecter des métriques à partir de sources de données telles que des applications, des services et des systèmes d’exploitation. Il stocke ces métriques dans un format compact et peut être interrogé pour obtenir des informations sur la performance et la disponibilité des applications et des services.

Prometheus est un outil très puissant qui peut être utilisé pour surveiller tous les aspects d’une infrastructure cloud-native. Il peut être utilisé pour surveiller les performances des applications, les performances des services, la disponibilité des services et bien plus encore. Il peut également être utilisé pour surveiller les performances des conteneurs et des microservices. Il offre une variété d’options de visualisation et de tableaux de bord pour afficher les données collectées par Prometheus. En outre, il offre une API REST qui peut être utilisée pour intégrer Prometheus à d’autres outils d’observabilité tels que Grafana ou Kibana.

J’utilise Prometheus depuis plusieurs années maintenant et je suis très satisfait de son fonctionnement. Il est très facile à configurer et à gérer, ce qui en fait un excellent choix pour les développeurs qui souhaitent surveiller leurs applications et leurs services. Il est également très flexible et peut être facilement intégré à d’autres outils d’observabilité. Enfin, il est open source, ce qui signifie qu’il est gratuit à utiliser et qu’il bénéficie du soutien de la communauté open source.

Source de l’article sur DZONE

Guide d'automatisation Jira avec exemples

Découvrez comment automatiser votre flux de travail Jira avec des exemples pratiques et faciles à suivre. Apprenez à optimiser votre productivité !

Les défauts de Jira ont été critiqués par de nombreux concurrents comme monday.com. Pourtant, il y a une raison pour laquelle Atlassian domine le marché de la gestion de projet avec un impressionnant 86,63 % sur le marché du suivi des bogues et des problèmes : la flexibilité et la personnalisation de leurs solutions.

Jira Automation 101

L’automatisation de Jira est une fonction sans code qui permet aux utilisateurs de Jira de créer des conditions « si ceci, alors cela » basées sur une large sélection d’événements et de déclencheurs, par exemple, un problème déplacé de « à faire » à « en cours » ou toutes les sous-tâches d’un problème parent déplacées vers « terminé ».

Jira Automation est une fonctionnalité sans code qui permet aux utilisateurs de Jira de créer des conditions « si ceci, alors cela » basées sur une large sélection d’événements et de déclencheurs, par exemple, un problème qui est déplacé de « à faire » à « en cours » ou toutes les sous-tâches d’une demande parente qui sont déplacées vers « terminé ». Cette fonctionnalité est très pratique pour automatiser les processus et les flux de travail complexes, et elle peut être personnalisée et adaptée aux besoins spécifiques de l’utilisateur.

Les avantages de Jira Automation

Jira Automation est très utile pour automatiser les processus et les flux de travail complexes. Il peut être personnalisé et adapté aux besoins spécifiques de l’utilisateur. Il permet également aux utilisateurs de créer des rapports personnalisés et des tableaux de bord pour suivre leurs projets. En outre, Jira Automation est intégré à la base de données Jira, ce qui signifie que les données sont stockées en toute sécurité et peuvent être facilement consultées à tout moment. Cela permet aux utilisateurs de gagner du temps et d’accéder rapidement aux informations dont ils ont besoin. De plus, Jira Automation est facile à apprendre et à utiliser, ce qui en fait un outil très pratique pour les utilisateurs débutants.

En conclusion, Jira Automation est une fonctionnalité très pratique qui permet aux utilisateurs de Jira d’automatiser leurs processus et leurs flux de travail complexes. Il offre une grande flexibilité et personnalisation, ce qui en fait un outil très utile pour les utilisateurs. En outre, il est intégré à la base de données Jira, ce qui permet aux utilisateurs d’accéder rapidement aux informations dont ils ont besoin. C’est pourquoi Jira est l’un des outils de gestion de projet les plus populaires sur le marché.

Source de l’article sur DZONE

Mise en œuvre de la découverte de services avec Spring Cloud (2e partie)

Dans cette deuxième partie, nous allons voir comment mettre en œuvre la découverte de services avec Spring Cloud. Préparez-vous à apprendre comment configurer et déployer vos services !

Partie 2 de l’Article Spring Cloud: Comment Implémenter le Service Discovery (Partie 1)

Dans la première partie de cet article, Spring Cloud: Comment implémenter le service de découverte (Partie 1), nous avons vu les bases du Service Discovery dans le contexte de Spring Cloud. Nous avons vu que la composante Netflix OSS Eureka est toujours le choix principal. Dans ce post, nous allons discuter de certains sujets supplémentaires liés à Eureka, tels que :

API Java Client

API REST

Sécuriser le serveur de découverte et les services clients

Combiner le Service Discovery avec la Configuration Distribuée

Service Discovery : API Java Client

Dans les exemples de la première partie de cet article, l’enregistrement et le récupération des fonctionnalités étaient exécutés sous le capot et nous avons seulement vu les résultats des tests de l’architecture entière en appelant un point de terminaison REST client. Il existe également une manière d’interagir avec l’API Eureka de manière programmatique, en utilisant des appels de méthodes Java. Un choix possible serait d’utiliser la classe EurekaClient. Par exemple, si nous voulons obtenir toutes les instances d’un service identifié par un ID particulier, nous pourrions écrire le code suivant, supposant que nous avons un client implémenté comme une application Spring Boot exposant des services REST :

EurekaClient eurekaClient = new EurekaClient.Builder().build();

Applications applications = eurekaClient.getApplications(« SERVICE_ID »);

List instances = applications.getInstances();

Une fois que nous avons obtenu la liste des instances, nous pouvons parcourir cette liste et récupérer les informations dont nous avons besoin, telles que l’adresse IP et le port sur lesquels le service est en cours d’exécution. Nous pouvons également effectuer des opérations supplémentaires sur les instances, telles que la mise à jour des informations ou la suppression d’une instance.

Service Discovery : API REST

Eureka fournit également une API REST qui peut être utilisée pour interagir avec le serveur de découverte. Cette API est très similaire à l’API Java client, mais elle est plus adaptée aux scénarios où nous devons interagir avec le serveur de découverte depuis un environnement non-Java ou depuis un script. Par exemple, si nous voulons récupérer toutes les instances d’un service spécifique, nous pouvons appeler l’URL suivante :

http://:/eureka/apps/

Cette URL retournera une réponse JSON contenant toutes les informations relatives à ce service et à ses instances. Nous pouvons également effectuer des opérations supplémentaires sur les instances, telles que la mise à jour des informations ou la suppression d’une instance, en appelant des URL spécifiques.

Service Discovery : Sécurisation du serveur et des services clients

Enfin, il est important de noter que le serveur Eureka et les services clients doivent être sécurisés pour éviter toute attaque malveillante. Par exemple, nous pouvons configurer Eureka pour utiliser HTTPS pour sécuriser les communications entre le serveur et les clients. Nous pouvons également configurer Eureka pour authentifier les clients et leurs requêtes en utilisant un système d’authentification basé sur des jetons. De plus, il est possible de configurer Eureka pour

Source de l’article sur DZONE

Modélisation des menaces informatiques

La modélisation des menaces informatiques est une pratique essentielle pour protéger les systèmes informatiques contre les attaques. Elle permet d’identifier et de gérer les risques.

Designer des logiciels sécurisés offre une large gamme de bénéfices

Le codage sécurisé offre de nombreux avantages, allant de la réduction du nombre d’heures humaines passées à corriger les vulnérabilités de sécurité en production à la limitation des pertes financières et des pénalités réglementaires, ce qui permet d’obtenir un avantage concurrentiel et d’accroître la fidélité des clients.

Le modélisation des menaces est un élément essentiel des principes directeurs « Sécurité par conception ». Cette fiche de référence fournira les principes fondamentaux de la modélisation des menaces, les pratiques de base pour une mise en œuvre sécurisée et les éléments clés pour mener à bien des examens de modèles de menace réussis. En explorant l’importance des outils modernes pour automatiser et rationaliser les processus de modélisation des menaces, nous examinerons comment améliorer la précision des résultats et faciliter l’intégration et la collaboration entre les équipes de logiciels et de sécurité tout au long du cycle de développement logiciel.

Enfin, nous verrons comment le codage peut être utilisé pour améliorer la sécurité des logiciels. Les outils de codage peuvent être utilisés pour détecter et corriger les failles de sécurité dans le code source, ainsi que pour vérifier que le code est conforme aux normes de sécurité. Les outils peuvent également être utilisés pour surveiller les modifications apportées au code et identifier les vulnérabilités potentielles. De plus, ils peuvent être utilisés pour analyser le comportement du code et détecter les anomalies, ce qui permet aux développeurs de prendre des mesures pour corriger les problèmes avant qu’ils ne deviennent critiques.

Source de l’article sur DZONE