Articles

Stratégies d'affinage LLM pour applications spécifiques au domaine.

Les stratégies d’affinage de modèles d’apprentissage machine (LLM) peuvent être appliquées pour adapter des applications spécifiques à un domaine. Découvrez comment ces stratégies peuvent améliorer vos résultats!

## Les modèles de langage larges (LLMs) sont des modèles d’intelligence artificielle (IA) avancés conçus pour comprendre la langue humaine et générer des réponses de type humain. Ils sont formés sur de grands jeux de données textuelles – d’où le nom « large » – construits sur un type de réseau neuronal appelé modèle de transformateur. Ils sont utilisés dans les chatbots et les assistants virtuels, la génération de contenu, la synthèse, la traduction, la génération de code, etc.

Testing LLMs is a crucial step in the development process. It is important to ensure that the model is working as expected and is able to handle different types of inputs. Testing can also help identify any potential issues or bugs in the model. It is also important to test the model’s performance on different datasets to ensure that it is able to generalize well.

Les modèles de langage larges (LLMs) sont des modèles d’intelligence artificielle (IA) avancés conçus pour comprendre la langue humaine et générer des réponses similaires à celles des humains. Ils sont formés à partir d’un grand nombre de jeux de données textuelles – d’où le nom «large» – construits sur un type de réseau neuronal appelé modèle de transformateur. Ils sont utilisés dans les chatbots et les assistants virtuels, la génération de contenu, la synthèse, la traduction, la génération de code, etc.

Une caractéristique remarquable des LLMs est leur capacité à être affinés. Ces derniers peuvent être formés plus avant pour améliorer leur performance globale et leur permettre d’adapter à de nouveaux domaines spécialisés, mettant en évidence leur adaptabilité et leur polyvalence.

Le test des LLMs est une étape cruciale du processus de développement. Il est important de s’assurer que le modèle fonctionne comme prévu et qu’il est capable de gérer différents types d’entrées. Les tests peuvent également aider à identifier tout problème ou bug potentiel dans le modèle. Il est également important de tester les performances du modèle sur différents jeux de données pour s’assurer qu’il est capable de généraliser correctement.

Source de l’article sur DZONE

Former des données avec ChatGPT : Guide pour développeurs

Apprenez à former des données avec ChatGPT et découvrez comment les développeurs peuvent tirer le meilleur parti de cette technologie puissante !

## Le lancement de ChatGPT par OpenAI a été transformateur pour l’intelligence conversationnelle AI. Impressionnant hors de la boîte, les capacités de ChatGPT sont intrinsèquement limitées par ses données d’entraînement fixes de 2021. Pour les développeurs de logiciels et les entreprises technologiques, l’entraînement de ChatGPT sur des jeux de données personnalisés est essentiel pour créer des assistants IA personnalisés qui évoluent avec votre entreprise.

Dans ce guide complet, nous explorerons les meilleures pratiques pour les équipes de logiciels afin de former des modèles ChatGPT personnalisés à l’aide de techniques telles que le réglage fin et la lecture interactive MEMWALKER.

Testing is a critical part of training ChatGPT models. It’s important to evaluate the performance of your model against a test dataset to ensure that it’s accurately predicting the desired output. Testing also helps identify any potential issues with the model, such as overfitting or underfitting. To get the most out of testing, it’s important to use a variety of metrics, such as accuracy, precision, recall, and F1 score.

Le lancement de ChatGPT par OpenAI a été transformateur pour l’intelligence conversationnelle IA. Impressionnant à l’état brut, les capacités de ChatGPT sont intrinsèquement limitées par ses données d’entraînement fixes de 2021. Pour les développeurs de logiciels et les entreprises technologiques, l’entraînement de ChatGPT sur des ensembles de données personnalisés est essentiel pour créer des assistants IA adaptés à votre entreprise.

Dans ce guide complet, nous explorerons les meilleures pratiques pour les équipes de logiciels afin de former des modèles ChatGPT personnalisés à l’aide de techniques telles que le réglage fin et la lecture interactive MEMWALKER.

Le test est une étape essentielle de l’entraînement des modèles ChatGPT. Il est important d’évaluer les performances de votre modèle sur un jeu de données de test pour s’assurer qu’il prédit correctement la sortie souhaitée. Les tests permettent également d’identifier tout problème potentiel avec le modèle, tel que le surapprentissage ou le sous-apprentissage. Pour tirer le meilleur parti des tests, il est important d’utiliser une variété de métriques, telles que la précision, la précision, le rappel et le score F1.

Source de l’article sur DZONE

Alternatives à GitHub pour les projets d'apprentissage machine.

GitHub est un outil très populaire pour le développement de projets, mais il existe d’autres alternatives pour les projets d’apprentissage machine. Découvrez-les ici!

Alternatives populaires à GitHub pour les projets d’apprentissage automatique

2. GitLab (gitlab.com)

GitLab is an all-in-one platform that offers a wide range of features, including code review, issue tracking, and project management. It is an ideal choice for those who are looking for a comprehensive solution for their machine learning projects. It also provides an integrated CI/CD pipeline to automate the process of building, testing, and deploying ML models. Moreover, it offers a robust security system to ensure that your data remains safe and secure.

3. Bitbucket (bitbucket.org)

Bitbucket is another popular platform for managing machine learning projects. It is a great choice for teams that are looking for a powerful yet simple solution to manage their projects. It provides a comprehensive set of features, including code review, issue tracking, and project management. Additionally, it offers an integrated CI/CD pipeline to automate the process of building, testing, and deploying ML models.

Dans le monde technologique en constante évolution, la recherche continue de plateformes efficaces pour rationaliser les projets d’apprentissage automatique est toujours persistante. Il est indéniable que GitHub a ouvert un chemin facile pour les développeurs du monde entier. Cependant, nous comprenons la nécessité de la diversité et de l’innovation dans ce domaine. C’est pourquoi nous vous présentons les meilleures alternatives à GitHub qui peuvent révolutionner votre approche des projets d’apprentissage automatique. Plongeons-nous dans certaines de ces plateformes qui offrent des fonctionnalités et des fonctionnalités robustes qui peuvent facilement donner à GitHub un combat.

Alternatives populaires à GitHub pour les projets d’apprentissage automatique

1. DVC (dvc.org)

Le contrôle de version des données (DVC) est un puissant outil permettant une gestion et une collaboration rationalisées des projets. Fondamentalement, il simplifie la gestion des données en s’intégrant étroitement à Git, ce qui permet de suivre les modifications des données et des modèles de manière méticuleuse, similaire à la façon dont Git suit les variations du code. Cela favorise une approche plus organisée pour gérer de grands jeux de données et apporte un plus grand degré de reproductibilité, car les membres d’équipe peuvent facilement revenir aux versions précédentes si nécessaire.

2. GitLab (gitlab.com

Source de l’article sur DZONE

Construire des architectures analytiques pour alimenter des applications temps réel

Construire des architectures analytiques pour alimenter des applications temps réel est une tâche complexe qui nécessite une planification minutieuse et une mise en œuvre rigoureuse.

Comprendre le rôle des analyses hors ligne

Testing the Efficiency of Offline Analytics

In order to ensure that an offline analytics architecture is efficient and cost-effective, it’s important to test its performance and scalability. This can be done by running a series of tests that measure the time it takes to process a given dataset, as well as the accuracy of the results. These tests should be conducted on a regular basis to ensure that the architecture is able to handle the increasing volume and complexity of data. Additionally, it’s important to test the architecture’s ability to integrate with existing systems and applications, as well as its ability to scale up or down as needed.

Conclusion

Offline analytics architectures are essential for preparing and enhancing data before it’s ready for real-time application. Testing the efficiency and scalability of such architectures is key to ensuring that they can handle the increasing volume and complexity of data. By running regular tests and monitoring the performance of the architecture, businesses can ensure that their data is ready for real-time insights and applications.

Comprendre le rôle des analyses hors ligne

Les analyses hors ligne impliquent le processus de collecte, de traitement et d’analyse de grands volumes de données de manière par lots, souvent sur des périodes plus longues. Cela contraste avec les analyses en temps réel, qui se concentrent sur l’analyse des données lorsqu’elles sont générées, avec des résultats immédiats. Bien que les analyses en temps réel offrent l’avantage d’une prise de conscience rapide, les analyses hors ligne fournissent la base sur laquelle ces informations sont construites. Les architectures d’analyse hors ligne sont conçues pour gérer des jeux de données volumineux, nettoyer et transformer les données et générer des résultats agrégés qui peuvent ensuite être exploités dans des applications en temps réel.

Tester l’efficacité des analyses hors ligne

Pour s’assurer que les architectures d’analyse hors ligne sont efficaces et rentables, il est important de tester leurs performances et leur évolutivité. Cela peut être fait en exécutant une série de tests qui mesurent le temps nécessaire pour traiter un jeu de données donné, ainsi que la précision des résultats. Ces tests doivent être effectués régulièrement pour s’assurer que l’architecture est capable de gérer le volume et la complexité croissants des données. De plus, il est important de tester la capacité de l’architecture à s’intégrer aux systèmes et applications existants, ainsi qu’à son aptitude à évoluer vers le haut ou vers le bas selon les besoins.

Conclusion

Les architectures d’analyse hors ligne sont essentielles pour préparer et améliorer les données avant qu’elles ne soient prêtes pour une application en temps réel. Tester l’efficacité et la scalabilité de ces architectures est essentiel pour s’assurer qu’elles peuvent gérer le volume et la complexité croissants des données. En exécutant des tests réguliers et en surveillant les performances de l’architecture, les entreprises peuvent s’assurer que leurs données sont prêtes pour des informations et des applications en temps réel.

Source de l’article sur DZONE

L'IA et l'IA générative : le voyage et le fonctionnement.

L’IA et l’IA générative sont des technologies qui offrent de nouvelles possibilités de voyage et de fonctionnement. Découvrons ensemble leurs avantages et leurs limites.

Ces dernières années, les technologies et services de pointe ont considérablement changé leurs directions, dynamiques et cas d’utilisation. Il est clair que la dernière vague d’adoption technologique mondiale par les industries est submergée par l’intelligence artificielle (IA) et ses différentes formes. L’IA s’intègre de plus en plus dans le tissu de notre vie quotidienne, changeant la façon dont nous vivons et travaillons. Cet article discute des bases de l’IA / ML, de son utilisation, de l’évolution de l’IA générative, de l’ingénierie prompte et de LangChain.

Machine Learning (ML) is a subset of AI that uses algorithms to learn from data and make predictions. ML algorithms are used to identify patterns in large datasets and then use those patterns to make predictions about future data. ML algorithms can be used to identify customer preferences, detect fraud, and recommend products.

L’intelligence artificielle et l’apprentissage automatique

L’intelligence artificielle (IA) est la capacité de simuler l’intelligence humaine et les processus de pensée tels que l’apprentissage et la résolution de problèmes. Il peut effectuer des tâches complexes qui historiquement ne pouvaient être effectuées que par des humains. Grâce à l’IA, un système non humain utilise des approches mathématiques et logiques pour simuler la raisonnement que les gens utilisent pour apprendre de nouvelles informations et prendre des décisions.

L’apprentissage automatique (ML) est un sous-ensemble de l’IA qui utilise des algorithmes pour apprendre des données et effectuer des prédictions. Les algorithmes d’apprentissage automatique sont utilisés pour identifier des modèles dans de grands ensembles de données et ensuite utiliser ces modèles pour effectuer des prédictions sur des données futures. Les algorithmes d’apprentissage automatique peuvent être utilisés pour identifier les préférences des clients, détecter la fraude et recommander des produits.

L’évolution de l’intelligence générative et le LangChain

L’intelligence générative (GI) est une forme avancée d’IA qui permet aux systèmes informatiques d’apprendre à partir de données et de générer des résultats sans être explicitement programmés pour le faire. Les systèmes GI peuvent apprendre à partir de données complexes et générer des résultats qui peuvent être utilisés pour prendre des décisions ou même créer des produits. Les systèmes GI sont utilisés pour la recherche, le développement de produits, la prise de décision et la gestion des bases de données.

Le LangChain est une technologie basée sur l’IA qui permet aux systèmes informatiques d’analyser les données textuelles et de les transformer en informations utiles. Le LangChain peut être utilisé pour extraire des informations à partir de documents, d’articles, de messages et même de conversations. Il peut également être utilisé pour générer des rapports, des recommandations et des prédictions basés sur les données textuelles.

En conclusion, l’IA et l’apprentissage automatique sont en train de révolutionner le monde numérique. Les technologies telles que l’intelligence générative et le LangChain offrent aux entreprises une variété de possibilités pour tirer parti des données et améliorer leurs opérations. Ces technologies sont en train de transformer radicalement la manière dont les entreprises interagissent avec leurs clients et leurs bases de données.

Source de l’article sur DZONE

Examine the Impact of Emptiness

 Examine the Impact of Emptiness

Google Cloud Platform: A Revolutionary Discovery

As a scientist, I am always looking for new and innovative ways to make discoveries and advance my research. Recently, I have made a revolutionary discovery that has the potential to revolutionize the way we conduct research and analyze data. This discovery is Google Cloud Platform.

Google Cloud Platform is a suite of cloud computing services that runs on the same infrastructure that Google uses internally for its end-user products, such as Google Search and YouTube. It provides a range of services including computing, storage, networking, big data, machine learning, and more. With Google Cloud Platform, researchers can access powerful computing resources without having to purchase and maintain their own hardware. This makes it much easier and more cost-effective to conduct research, analyze data, and develop new applications.

The power of Google Cloud Platform lies in its scalability. Researchers can easily scale up their computing resources as needed, without having to invest in additional hardware. This makes it ideal for large-scale research projects that require a lot of computing power. Additionally, Google Cloud Platform provides a wide range of tools and services that make it easy to manage and analyze data. This includes BigQuery, which allows researchers to query large datasets quickly and easily, as well as tools for machine learning and artificial intelligence.

In conclusion, Google Cloud Platform is a revolutionary discovery that has the potential to revolutionize the way we conduct research and analyze data. With its scalability and range of tools and services, it makes it much easier and more cost-effective to conduct research and develop new applications. I am excited to see how this discovery will continue to shape the future of research and data analysis.

The most important task in any machine learning model is finding or building a dataset that perfectly accommodates your algorithm. Without the correct foundation, your machine learning model may not perform in its intended way.

While well-known sites such as Kaggle allow you to download and utilize thousands of adequate datasets, a few other dataset providers are increasing in popularity. In this article, we will cover one known as Hugging Face.

Source de l’article sur DZONE

With the amount of data produced on a daily basis continuing to rise, so too do the number of data points that companies collect. Apache Iceberg was developed as an open table format to help sift through large analytical datasets.

This Refcard introduces you to Apache Iceberg by taking you through the history of its inception, dives into key methods and techniques, and provides hands-on examples to help you get introduced to the Iceberg community.
Source de l’article sur DZONE

Data is becoming increasingly crucial for success in the digital economy. You might ask, why do organizations rely so much on data? Well, a majority of organizations rely on data for multiple processes, from product management and fraud detection to HR, finance, and manufacturing. Data analytics allow users to use pre-made reports to track performance metrics on demand. Research shows that 94% of organizations believe that data and analytics solutions are critical for growth. Not a surprising statistic since it offers several benefits, including an increase in productivity and efficiency, faster and more effective decision making, and financial gains!  

Before we dive into the ins and outs of data analytics, it is important to understand the two terms, namely ‘data science’ and ‘data analytics. Data science lays emphasis on finding meaningful correlations between large datasets, while data analytics is a branch of data science designed to uncover specifics of extracted insights 

Source de l’article sur DZONE