Articles

Tutoriels vidéo : messages Java consommateur/producteur entre serveur Kafka

Les tutoriels vidéo sur les messages Java consommateur/producteur entre serveur Kafka sont une excellente façon d’apprendre à maîtriser cette technologie. Découvrez comment configurer et utiliser cette technologie !

Comment envoyer et recevoir des messages entre un consommateur Java et un producteur et le serveur Apache Kafka dans cette série de tutoriels vidéo

Premier Paragraphe

L’architecture Apache Kafka est un système de messagerie distribué qui peut être utilisé pour construire des applications de streaming et de traitement des données. Il est largement utilisé dans les applications de streaming et de traitement des données pour la mise en œuvre de pipelines de traitement des données complexes. Dans cette série de tutoriels vidéo, nous allons explorer la procédure d’envoi et de réception de messages entre un consommateur et un producteur Java et le serveur Apache Kafka. Nous allons également examiner le code Java pour consommer des messages à partir du serveur Apache Kafka.

Deuxième Paragraphe

Le code Java pour consommer des messages à partir du serveur Apache Kafka est assez simple. Tout d’abord, vous devez créer un objet KafkaConsumer et spécifier le type de données que vous souhaitez consommer. Ensuite, vous devez définir le serveur Apache Kafka sur lequel vous souhaitez envoyer les messages. Enfin, vous pouvez appeler la méthode subscribe () pour s’abonner à un sujet et commencer à recevoir des messages. Vous pouvez également spécifier le type de données que vous souhaitez recevoir à l’aide de la méthode subscribe ().

Troisième Paragraphe

Une fois que vous avez abonné un sujet, vous pouvez appeler la méthode poll () pour récupérer les messages du serveur Apache Kafka. La méthode poll () prend en charge plusieurs paramètres, notamment le temps d’attente maximal, le nombre maximum de messages à récupérer et le type de données à récupérer. Une fois que vous avez récupéré les messages, vous pouvez les traiter en fonction des besoins de votre application. Une fois que vous avez traité les messages, vous pouvez les envoyer à un autre serveur Apache Kafka ou les stocker dans un magasin de données.

Source de l’article sur DZONE

Guide détaillé avec exemples de code pour l'entraînement personnalisé de grands modèles linguistiques

Vous souhaitez entraîner des modèles linguistiques complexes ? Ce guide vous fournira des exemples de code et des instructions détaillées pour vous aider à atteindre vos objectifs.

H2: Dans les dernières années, les grands modèles linguistiques (LLMs) tels que GPT-4 ont suscité un grand intérêt en raison de leurs incroyables capacités en compréhension et en génération du langage naturel. Cependant, pour adapter un LLM à des tâches ou des domaines spécifiques, une formation personnalisée est nécessaire. Cet article propose un guide détaillé et étape par étape sur la formation personnalisée des LLMs, accompagné d’exemples et d’extraits de code. Prérequis

• A GPU-enabled machine with at least 8GB of RAM

• An understanding of basic ML concepts

• Familiarity with Python and TensorFlow

• Access to a large dataset

Ces dernières années, les grands modèles linguistiques (LLMs) tels que GPT-4 ont suscité un intérêt considérable en raison de leurs incroyables capacités en compréhension et en génération du langage naturel. Cependant, pour adapter un LLM à des tâches ou des domaines spécifiques, une formation personnalisée est nécessaire. Cet article propose un guide détaillé étape par étape sur la formation personnalisée des LLMs, accompagné d’exemples et d’extraits de code.

Prérequis

Avant de plonger, assurez-vous d’avoir :

• Une machine dotée d’une carte graphique et d’au moins 8 Go de RAM

• Une compréhension des concepts de base d’apprentissage machine

• De la familiarité avec Python et TensorFlow

• Un accès à une grande base de données

Mise en œuvre

Une fois les prérequis remplis, vous êtes prêt à commencer à former votre modèle. La première étape consiste à préparer votre base de données. Vous devrez peut-être nettoyer et normaliser vos données avant de les charger dans votre modèle. Une fois que vos données sont prêtes, vous pouvez les charger dans votre modèle. Vous pouvez le faire en utilisant TensorFlow ou un autre framework de deep learning. Une fois que vos données sont chargées, vous pouvez commencer à entraîner votre modèle. Vous pouvez le faire en utilisant des algorithmes d’apprentissage supervisé ou non supervisé. Lorsque vous entraînez votre modèle, vous devrez définir des paramètres tels que le nombre d’itérations, le taux d’apprentissage et le nombre de couches cachées. Vous devrez également définir des métriques pour mesurer la performance de votre modèle.

Une fois que votre modèle est entraîné, vous pouvez le tester sur des données réelles pour voir comment il se comporte. Vous pouvez également effectuer une validation croisée pour vérifier si votre modèle est capable de généraliser ses résultats sur des données différentes. Une fois que vous êtes satisfait des performances de votre modèle, vous pouvez le déployer pour l’utiliser dans un environnement réel. Vous pouvez le déployer sur un serveur ou un cloud public tel que Google Cloud Platform ou Amazon Web Services. Une fois déployé, votre modèle sera prêt à être utilisé par les utilisateurs finaux.

Enfin, vous devrez peut-être maintenir et mettre à jour votre modèle au fil du temps. Vous devrez peut-être ajouter de nouvelles données à votre base de données ou ajuster les paramètres de votre modèle pour améliorer ses performances. Vous devrez également surveiller les performances de votre modèle pour vous assurer qu’il fonctionne correctement et qu’il ne se dégrade pas avec le temps. Enfin, vous devrez peut-être effectuer une analyse des performances pour comprendre comment votre modèle est utilisé et pourquoi il fonctionne bien ou mal.

En résumé, la

Source de l’article sur DZONE

CockroachDB TIL : Vol. 12

Découvrez le dernier volume de CockroachDB TIL ! Apprenez-en plus sur les fonctionnalités et les améliorations de CockroachDB pour vous aider à développer des applications plus robustes.

Articles précédents

Volumes 1 à 11

Sujets

Le volume 1 à 11 de cet article traite de différents sujets liés au logiciel. Dans ce volume, nous allons examiner le sujet n°1 : Identifier les index partiels. Notre équipe d’ingénieurs a publié un avis technique #96924 indiquant que certains changements de schéma, tels que la suppression de colonnes référencées dans des index partiels, échoueront. Un client demande comment identifier les bases de données, les tables et les index partiels associés qui référencent les colonnes à supprimer. Les méthodes suivantes vont aider à trouver ces index indésirables.

En considérant une table avec les données suivantes :

Table: customers

Columns: id, name, address

Indexes:

CREATE INDEX customers_name_idx ON customers (name) WHERE address IS NOT NULL;

CREATE INDEX customers_address_idx ON customers (address) WHERE name IS NOT NULL;

La première méthode consiste à exécuter une requête SQL pour obtenir les informations sur les index partiels. La requête suivante peut être utilisée pour obtenir les informations sur les index partiels pour la table « customers » :

SELECT * FROM pg_indexes WHERE indpred IS NOT NULL AND tablename = ‘customers’;

Cette requête renvoie les informations sur les index partiels pour la table « customers ». Le résultat de cette requête est le suivant :

indexname | tablename | indpred

———-+———–+———

customers_name_idx | customers | (address IS NOT NULL)

customers_address_idx | customers | (name IS NOT NULL)

La deuxième méthode consiste à utiliser un outil logiciel pour identifier les index partiels. Il existe plusieurs outils logiciels qui peuvent être utilisés pour identifier les index partiels. Certains des outils logiciels populaires sont pg_indexes, pg_stat_user_indexes et pg_stat_all_indexes. Ces outils peuvent être utilisés pour obtenir des informations détaillées sur les index partiels d’une base de données. Ces outils peuvent également être utilisés pour obtenir des informations sur les index partiels pour une table spécifique.

Enfin, la troisième méthode consiste à utiliser le fichier de configuration du serveur PostgreSQL pour identifier les index partiels. Le fichier de configuration du serveur PostgreSQL contient des informations détaillées sur les index partiels. Ces informations peuvent être utilisées pour identifier les index partiels pour une base de données ou une table spécifique.

En conclusion, il existe plusieurs méthodes pour identifier les index partiels dans une base de données PostgreSQL. Ces méthodes peuvent être utilisées pour obtenir des informations détaillées sur les index partiels d’une base de données ou d’une table spécifique. Ces méthodes peuvent également être utilisées pour identifier les index partiels qui référencent des colonnes à supprimer.

Source de l’article sur DZONE

Optimiser les performances Cloud : Guide approfondi de tests et avantages

Découvrez comment optimiser les performances Cloud grâce à notre guide approfondi de tests et d’avantages ! Apprenez à tirer le meilleur parti de votre Cloud.

Êtes-vous confronté à des problèmes lors de la mesure de la scalabilité d’une organisation et d’autres facteurs de performance? Les utilisateurs peuvent accéder à leurs ressources à partir de n’importe quel appareil doté d’une connexion Internet, ce qui est l’un des principaux avantages des tests de performance en nuage. Cela implique que les investissements en matériel et en logiciel ne sont plus une préoccupation majeure lors de l’évaluation des exigences de scalabilité et de performance optimales d’une organisation. Les débits et les temps de latence de votre système sont mesurés par des tests de performance en nuage lorsque le nombre d’utilisateurs simultanés utilisant votre application change. Plusieurs caractéristiques de performances et différents modèles de charge sont également mesurés.

Les données sont devenues un élément essentiel pour les entreprises modernes. Les entreprises doivent mesurer la scalabilité et les autres facteurs de performance de leur organisation afin d’assurer leur croissance. Cependant, cette tâche peut s’avérer difficile et coûteuse. Heureusement, le test de performance en nuage offre une solution rentable et efficace pour mesurer la scalabilité et les performances d’une organisation.

Le test de performance en nuage est une méthode qui permet aux utilisateurs d’accéder à leurs ressources depuis n’importe quel appareil doté d’une connexion Internet. Cela signifie que l’investissement en matériel et en logiciels n’est plus une préoccupation majeure lors de l’évaluation de la scalabilité et des exigences optimales de performance d’une organisation. Le débit et la latence du système sont mesurés à mesure que le nombre d’utilisateurs simultanés utilisant l’application change. De plus, plusieurs caractéristiques de performance et différents modèles de charge sont également mesurés.

Le test de performance en nuage est une méthode très pratique pour les entreprises qui cherchent à mesurer leurs performances et leur scalabilité. Il permet aux entreprises de tester leurs applications à grande échelle sans avoir à investir dans des serveurs et des logiciels coûteux. De plus, il offre une précision et une fiabilité inégalées pour mesurer les performances et la scalabilité des applications. Enfin, le test de performance en nuage est une méthode rapide et rentable pour mesurer la scalabilité et les performances d’une organisation.

Source de l’article sur DZONE

Créer une architecture de microservices avec Java

Créer une architecture de microservices avec Java est une tâche complexe, mais qui peut offrir des avantages considérables. Découvrons comment le faire !

« Approche de l’Architecture des Microservices »

En premier lieu, l’architecture des microservices est une approche où un système logiciel est décomposé en services plus petits et indépendants qui communiquent entre eux via des API. Chaque service est responsable d’une fonction commerciale spécifique et peut être développé, déployé et mis à l’échelle indépendamment. Cela facilite la maintenance et la modification du système, car les modifications apportées à un service n’affectent pas l’ensemble du système.

Les avantages de l’architecture des microservices sont nombreux. Tout d’abord, elle permet une plus grande flexibilité et une plus grande évolutivité. Les services peuvent être développés, déployés et mis à l’échelle indépendamment les uns des autres, ce qui permet d’ajouter ou de supprimer des fonctionnalités sans affecter le reste du système. De plus, les microservices sont plus faciles à tester et à maintenir car ils sont isolés et peuvent être testés individuellement.

Java est un excellent choix pour la construction de microservices. Java est une plate-forme très populaire et très répandue, ce qui signifie qu’il y a une grande communauté de développeurs qui peuvent aider à résoudre les problèmes. De plus, Java est très bien adapté pour la construction de microservices car il prend en charge les tests unitaires et intégrés, ce qui permet aux développeurs de tester facilement leurs services. Enfin, Java est très flexible et peut être utilisé pour construire des services basés sur des conteneurs ou des machines virtuelles.

En résumé, l’architecture des microservices est une approche moderne pour construire des systèmes logiciels flexibles, évolutifs et faciles à maintenir. Les avantages de cette approche sont nombreux, notamment une plus grande flexibilité et une plus grande évolutivité. Java est un excellent choix pour la construction de microservices car il prend en charge les tests unitaires et intégrés et est très flexible.

Source de l’article sur DZONE

Créer une chaîne de données optimisée sur Azure avec Spark, Data Factory, Databricks et Synapse Analytics

Créer une chaîne de données optimisée sur Azure n’est pas une tâche facile. Heureusement, avec Spark, Data Factory, Databricks et Synapse Analytics, vous pouvez le faire rapidement et efficacement.

Intégration de données avec Azure Data Factory

Processing Data With Apache Spark 

Apache Spark is an open-source distributed computing framework used for big data processing. It is designed to process data in memory, making it much faster than traditional disk-based processing. Spark can be used to process data from various sources such as databases, file systems, and cloud storage. It also provides a rich set of APIs and libraries for data manipulation, machine learning, and graph processing.

Analyzing Data With Azure Synapse Analytics 

Azure Synapse Analytics is a cloud-based analytics platform that enables you to analyze data from various sources. It provides a unified workspace for data preparation, data warehousing, and advanced analytics. It also offers a wide range of features such as data virtualization, machine learning, and natural language processing.

Le traitement des données dans le cloud est devenu de plus en plus populaire en raison de sa scalabilité, de sa flexibilité et de son efficacité économique. Les stacks technologiques modernes tels que Apache Spark, Azure Data Factory, Azure Databricks et Azure Synapse Analytics offrent des outils puissants pour créer des pipelines de données optimisés qui peuvent ingérer et traiter efficacement les données dans le cloud. Cet article explorera comment ces technologies peuvent être utilisées ensemble pour créer un pipeline de données optimisé pour le traitement des données dans le cloud.

Ingestion des données avec Azure Data Factory 

Azure Data Factory est un service d’intégration de données basé sur le cloud qui vous permet d’ingérer des données à partir de diverses sources vers un lac ou un entrepôt de données basé sur le cloud. Il fournit des connecteurs intégrés pour diverses sources de données telles que des bases de données, des systèmes de fichiers, un stockage dans le cloud et plus encore. En outre, vous pouvez configurer Data Factory pour planifier et orchestrer les processus d’ingestion de données et définir les transformations des flux de données.

Traitement des données avec Apache Spark 

Apache Spark est un cadre de calcul distribué open source utilisé pour le traitement des données volumineuses. Il est conçu pour traiter les données en mémoire, ce qui le rend beaucoup plus rapide que le traitement traditionnel basé sur le disque. Spark peut être utilisé pour traiter des données provenant de diverses sources telles que des bases de données, des systèmes de fichiers et un stockage dans le cloud. Il fournit également une riche gamme d’API et de bibliothèques pour la manipulation des données, l’apprentissage automatique et le traitement des graphes.

Analyse des données avec Azure Synapse Analytics 

Azure Synapse Analytics est une plateforme d’analyse basée sur le cloud qui vous permet d’analyser des données provenant de diverses sources. Il fournit un espace de travail unifié pour la préparation des données, le stockage des données et l’analyse avancée. Il offre également une large gamme de fonctionnalités telles que la virtualisation des données, l’apprentissage automatique et le traitement du langage naturel.

Le logiciel est l’outil principal pour le traitement des données dans le cloud. Les technologies modernes telles qu’Apache Spark, Azure Data Factory, Azure Databricks et Azure Synapse Analytics offrent aux développeurs et aux entreprises une variété d’options pour créer des pipelines de données optimisés qui peuvent ingérer et traiter efficacement les données dans le cloud. Apache Spark est un cadre open source qui permet un traitement rapide des données volumineuses en m

Source de l’article sur DZONE

Chasse au trésor Agile-DevOps : réaliser la transition DevOps

avec succès

La chasse au trésor Agile-DevOps est une méthodologie innovante qui permet aux organisations de réaliser la transition DevOps avec succès. Découvrez comment!

Les flux de valeur ont été un principe central de la pensée Lean depuis des décennies, à commencer par Toyota et le mouvement Lean Manufacturing, et sont désormais largement adoptés dans tous les secteurs. Malgré cela, de nombreuses entreprises doivent encore exploiter pleinement le potentiel des flux de valeur pour provoquer un changement organisationnel et atteindre une plus grande efficacité et efficience. Au lieu de cela, elles peuvent se concentrer uniquement sur des métriques telles que la vitesse d’équipe ou la vitesse du pipeline de production, en manquant le tableau plus large du système de bout en bout.

Dans le développement de produits modernes, la compréhension des flux de valeur est cruciale pour optimiser nos modes de travail et fournir de la valeur aux clients. En cartographiant le chemin vers la valeur, nous pouvons obtenir une visibilité sur nos processus et identifier les domaines d’amélioration, tels que les goulots d’étranglement du déploiement du code ou les incompatibilités entre les personnels et les rôles.

L’architecture des flux de valeur a été un principe central de la pensée Lean depuis des décennies, à partir de Toyota et du mouvement Lean Manufacturing, et est maintenant largement adoptée dans tous les secteurs. Malgré cela, de nombreuses entreprises doivent encore exploiter pleinement le potentiel des flux de valeur pour stimuler le changement organisationnel et atteindre une plus grande efficacité et efficience. Au lieu de cela, ils peuvent se concentrer uniquement sur des métriques telles que la vitesse d’équipe ou la vitesse du pipeline de production, en manquant le tableau d’ensemble du système de bout en bout.

Dans le développement de produits modernes, comprendre les flux de valeur est essentiel pour optimiser nos modes de travail et livrer de la valeur aux clients. En cartographiant le chemin vers la valeur, nous pouvons obtenir une visibilité sur nos processus et identifier les domaines d’amélioration, tels que les goulots d’étranglement du déploiement du code ou les incompatibilités entre le personnel et les rôles.

En outre, en comprenant les flux de valeur, nous pouvons mieux aligner les équipes et les processus sur l’objectif de livrer de la valeur à nos clients. Nous pouvons également identifier les points d’accélération et les points de friction dans le système et prendre des mesures pour améliorer la qualité et la rapidité des livraisons. Enfin, en surveillant les flux de valeur, nous pouvons mieux comprendre comment les changements apportés à l’architecture affectent la capacité de l’organisation à livrer de la valeur à ses clients.

Source de l’article sur DZONE

Étapes pour les développeurs vers l'IT durable.

Les développeurs sont à la pointe de l’innovation technologique. Mais comment peuvent-ils adopter une approche durable pour leurs projets IT ? Découvrez les étapes à suivre !

Les conséquences réelles de quelque chose d’aussi abstrait que le logiciel

Même quelque chose d’aussi abstrait que le logiciel a des conséquences concrètes. Les centres de données consomment environ 1 % de l’énergie mondiale et ces serveurs à haute consommation représentent une fraction minime de l’utilisation totale de l’énergie informatique. Il est temps pour les développeurs informatiques de prendre au sérieux la réduction de leur empreinte carbone.

Aller vert peut prendre plusieurs formes, y compris l’écriture de meilleurs codes, des modifications matérielles et des changements dans la culture du lieu de travail. Les professionnels de l’informatique peuvent utiliser les techniques suivantes pour minimiser l’impact environnemental.

La première étape consiste à optimiser les bases de données. Les bases de données sont un élément essentiel des systèmes informatiques et peuvent consommer une quantité significative d’énergie. Les développeurs peuvent réduire la consommation d’énergie en optimisant leur base de données. Cela peut être fait en réduisant le nombre de requêtes, en réduisant le nombre de tables et en supprimant les données non utilisées. Les développeurs peuvent également améliorer l’efficacité des bases de données en utilisant des outils tels que l’indexation et la compression des données.

Deuxièmement, les développeurs peuvent réduire leur empreinte carbone en réduisant le nombre de serveurs nécessaires. Les serveurs sont l’un des principaux consommateurs d’énergie dans les centres de données et peuvent facilement être réduits en consolidant plusieurs serveurs sur un seul serveur. Les développeurs peuvent également réduire le nombre de serveurs en utilisant des technologies telles que le cloud computing et le virtualisation. Ces technologies permettent aux développeurs d’utiliser plusieurs serveurs virtuels sur un seul serveur physique, ce qui permet une meilleure utilisation des ressources et une réduction des coûts.

Enfin, les développeurs peuvent également réduire leur empreinte carbone en modifiant leur culture de travail. Les développeurs peuvent encourager l’utilisation de technologies plus écologiques telles que les écrans à LED et les imprimantes à faible consommation d’énergie. Ils peuvent également encourager l’utilisation des transports publics ou du covoiturage pour se rendre au travail et encourager le télétravail pour les employés qui le peuvent. Enfin, ils peuvent encourager les employés à recycler et à adopter des pratiques plus respectueuses de l’environnement.

Même si le logiciel est abstrait, il a des conséquences concrètes sur l’environnement. Les professionnels de l’informatique peuvent réduire leur empreinte carbone en optimisant leurs bases de données, en réduisant le nombre de serveurs nécessaires et en modifiant leur culture de travail. En adoptant ces techniques, les développeurs informatiques peuvent contribuer à la protection de l’environnement et à la préservation des ressources naturelles pour les générations futures.

Source de l’article sur DZONE

Architecture Data Mesh : Changement de Paradigme en Ingénierie des Données

L’Architecture Data Mesh représente un changement de paradigme dans l’ingénierie des données, offrant une nouvelle approche pour tirer le meilleur parti des données.

## Data Mesh : Une architecture de données répartie et orientée domaine qui fait évoluer le paradigme de l’ingénierie des données

Data Mesh is based on the idea of a “data mesh”, which is an interconnected network of data services that are designed to be loosely coupled and highly distributed. Data Mesh focuses on the domain-oriented design of data services, which allows for greater agility and flexibility in data engineering. Additionally, Data Mesh emphasizes the use of open source software and cloud-native technologies, which can help organizations reduce costs and increase scalability.

Le Data engineering est un domaine en constante évolution qui est constamment mis à l’épreuve par le volume croissant, la vitesse et la variété des données générées et traitées par les organisations. Les approches traditionnelles de data engineering sont souvent centralisées et monolithiques, ce qui peut entraîner des difficultés en matière d’évolutivité, d’agilité et de flexibilité. Ces dernières années, un nouveau paradigme architectural appelé Data Mesh a émergé comme une nouvelle façon de relever ces défis et de permettre une data engineering plus efficace et plus efficace.

Data Mesh est une architecture de données distribuée et orientée vers le domaine qui prône un changement de paradigme dans la façon dont le data engineering est abordé au sein des organisations. Il a été introduit pour la première fois par Zhamak Dehghani, un leader de pensée dans la communauté du data engineering, et a suscité un intérêt considérable en tant qu’approche prometteuse pour le data engineering moderne.

Data Mesh repose sur l’idée d’un «maillage de données», qui est un réseau interconnecté de services de données conçus pour être faiblement couplés et hautement distribués. Data Mesh se concentre sur la conception orientée vers le domaine des services de données, ce qui permet une plus grande agilité et flexibilité dans le data engineering. En outre, Data Mesh met l’accent sur l’utilisation de logiciels open source et de technologies natives du cloud, ce qui peut aider les organisations à réduire leurs coûts et à augmenter leur évolutivité.

Source de l’article sur DZONE

Concevoir une architecture hybride durable: le rôle crucial de l'empreinte carbone

La conception d’une architecture hybride durable est un défi majeur. Une attention particulière doit être portée à l’empreinte carbone pour garantir une solution durable.

L’augmentation de la demande en services de cloud computing et son impact sur l’environnement, mettant en évidence la nécessité de prioriser la durabilité et de réduire les émissions de carbone dans les environnements cloud hybrides, sont abordés dans cet article. Il souligne l’importance des exigences non fonctionnelles, en particulier l’empreinte carbone, dans la conception de l’architecture cloud hybride et la nécessité d’un rapport standardisé des émissions de carbone pour la transparence et le respect des obligations. L’article explore également diverses opportunités pour minimiser l’empreinte carbone, notamment l’optimisation de l’utilisation de l’énergie et des exigences matérielles, ainsi que la gestion de l’empreinte carbone par le suivi et le reporting des émissions, l’optimisation de l’utilisation du matériel et l’adoption de sources d’énergie renouvelables. Le rôle des fournisseurs de cloud dans l’aide aux entreprises à réduire leur empreinte carbone est discuté, ainsi que l’importance de la collaboration entre les dirigeants d’entreprise, les équipes informatiques et les fournisseurs de cloud pour intégrer la durabilité dans le processus de conception de la solution. De plus, l’article met en évidence l’impact significatif des exigences non fonctionnelles telles que le placement des charges de travail et le routage du réseau sur l’empreinte carbone d’une entreprise, soulignant la nécessité de prendre en compte les facteurs de durabilité pendant la conception et la mise en œuvre des environnements cloud hybrides pour réduire les émissions de carbone et se conformer aux exigences réglementaires.

## L’impact de la demande croissante en services de cloud computing sur l’environnement et la nécessité de prioriser la durabilité

L’utilisation croissante des services de cloud computing et son impact sur l’environnement soulignent la nécessité de prioriser la durabilité et de réduire les émissions de carbone dans les environnements hybrides cloud. Il est important de mettre l’accent sur les exigences non fonctionnelles, en particulier l’empreinte carbone, dans la conception de l’architecture hybride cloud et la nécessité d’un rapport standardisé des émissions de carbone pour la transparence et le respect des obligations.

Il existe plusieurs possibilités pour minimiser l’empreinte carbone, notamment l’optimisation de l’utilisation de l’énergie et des exigences matérielles, ainsi que la gestion de l’empreinte carbone par le suivi et le rapport des émissions, l’optimisation de l’utilisation du matériel et l’adoption de sources d’énergie renouvelables. Le rôle des fournisseurs de cloud dans l’aide aux entreprises à réduire leur empreinte carbone est discuté, ainsi que l’importance de la collaboration entre les dirigeants d’entreprise, les équipes informatiques et les fournisseurs de cloud pour intégrer la durabilité dans le processus de conception des solutions. De plus, l’article met en évidence l’impact significatif des exigences non fonctionnelles telles que le placement des charges de travail et le routage du réseau sur l’empreinte carbone d’une entreprise, soulignant la nécessité de prendre en compte les facteurs de durabilité lors de la conception et de la mise en œuvre des environnements hybrides cloud pour réduire les émissions de carbone et se conformer aux exigences réglementaires.

Les solutions hybrides cloud sont un moyen efficace pour les entreprises de réduire leur empreinte carbone et de répondre aux exigences réglementaires. Les fournisseurs de cloud doivent travailler en étroite collaboration avec les entreprises pour intégrer la durabilité dans le processus de conception des solutions. Les entreprises doivent également prendre en compte les exigences non fonctionnelles telles que le placement des charges de travail et le routage du réseau pour réduire leur empreinte carbone. Enfin, il est important d’adopter des sources d’énergie renouvelables et d’optimiser l’utilisation des ressources matérielles et énergétiques pour minimiser l’empreinte carbone et respecter les exigences réglementaires. La conception d’une architecture hybride cloud durable est essentielle pour assurer une empreinte carbone minimale et une conformité aux exigences réglementaires.

Source de l’article sur DZONE