Articles

Améliorer la prise de décision avec Dyna-Q et Q-Learning

Dyna-Q et Q-Learning sont des méthodes puissantes pour améliorer la prise de décision. Elles offrent des solutions innovantes et efficaces pour résoudre des problèmes complexes.

Introduction à l’apprentissage Q

The learning process begins with initializing the Q-values to arbitrary values. After that, the agent interacts with the environment, observing the reward for each action taken. The agent then updates its Q-values using the Bellman equation, which takes into account the reward observed and the estimated future reward.

The agent continues this process until it converges to a policy that maximizes its expected reward. This process is known as exploration-exploitation, where the agent explores different actions to find the best one, and then exploits that action to maximize its reward.

Introduction à l’apprentissage Q

L’apprentissage Q est un algorithme sans modèle essentiel dans l’apprentissage par renforcement, se concentrant sur l’apprentissage de la valeur, ou «valeur Q», des actions dans des états spécifiques. Cette méthode excelle dans les environnements imprévisibles, car elle n’a pas besoin d’un modèle prédéfini de son environnement. Il s’adapte aux transitions stochastiques et aux récompenses variées de manière efficace, ce qui le rend polyvalent pour les scénarios où les résultats sont incertains. Cette flexibilité permet à l’apprentissage Q d’être un outil puissant dans les scénarios nécessitant une prise de décision adaptative sans connaissance préalable des dynamiques de l’environnement.

Processus d’apprentissage:

L’apprentissage Q fonctionne en mettant à jour une table de valeurs Q pour chaque action dans chaque état. Il utilise l’équation de Bellman pour mettre à jour ces valeurs de manière itérative en fonction des récompenses observées et de sa estimation des récompenses futures. La politique – la stratégie de choix d’actions – est dérivée de ces valeurs Q.

Le processus d’apprentissage commence par l’initialisation des valeurs Q à des valeurs arbitraires. Après cela, l’agent interagit avec l’environnement, observant la récompense pour chaque action prise. L’agent met alors à jour ses valeurs Q en utilisant l’équation de Bellman, qui tient compte de la récompense observée et de la récompense future estimée.

L’agent continue ce processus jusqu’à ce qu’il converge vers une politique qui maximise sa récompense attendue. Ce processus est connu sous le nom d’exploration-exploitation, où l’agent explore différentes actions pour trouver la meilleure, puis exploite cette action pour maximiser sa récompense.

Architecture de l’apprentissage Q

L’architecture de l’apprentissage Q est relativement simple et peut être représentée par un diagramme à blocs. Il comprend un agent qui interagit avec un environnement et un tableau de valeurs Q qui stocke les valeurs Q pour chaque action dans chaque état. Lorsque l’agent interagit avec l’environnement, il observe la récompense et met à jour le tableau de valeurs Q en utilisant l’équation de Bellman.

Le tableau de valeurs Q est le cœur de l’architecture de l’apprentissage Q. Il stocke les valeurs Q pour chaque action dans chaque état et est mis à jour par l’agent en fonction des récompenses observées et des estimations des récompenses futures. Une fois que le tableau est mis à jour, l’agent peut choisir la meilleure action à prendre

Source de l’article sur DZONE

Révolutionner le trading algorithmique : le pouvoir de l'apprentissage par renforcement

La technologie d’apprentissage par renforcement est en train de révolutionner le trading algorithmique. Elle offre aux traders des possibilités inédites pour améliorer leurs performances.

En tant que professionnels de la technologie, nous sommes déjà conscients que notre monde est de plus en plus axé sur les données. C’est particulièrement vrai dans le domaine des marchés financiers, où le trading algorithmique est devenu la norme, utilisant des algorithmes complexes pour exécuter des transactions à des vitesses et fréquences qui dépassent largement les capacités humaines. Dans ce monde où les millisecondes peuvent faire la différence entre le profit et la perte, le trading algorithmique offre un avantage en rendant le trading plus systématique et moins influencé par les biais émotionnels humains.

Mais que se passerait-il si nous pouvions aller plus loin? Et si nos algorithmes de trading pouvaient apprendre de leurs erreurs, s’adapter à de nouvelles conditions de marché et améliorer constamment leur performance au fil du temps? C’est là que l’apprentissage par renforcement, un domaine de pointe de l’intelligence artificielle, entre en jeu.

Source de l’article sur DZONE


The High Cost of Deep Learning

Have you ever put on a sweater because the air conditioning was too cold? Forgotten to turn off the lights in another room before heading to bed? Do you commute to work more than 30 minutes every day just for the sake of “filling seats” at the office, even though everything you do at work could be done via laptop from home? 

In the counter-intuitive trade-offs between sample and computational efficiency in Reinforcement Learning, choosing evolution strategies can be smarter than it looks.

Source de l’article sur DZONE

In a classical prediction use case, the predicted output is either a number (for regression) or category (for classification). A set of training data (x, y) where x is the input and y is the labeled output is provided to train a parameterized predictive model.

  • The model is characterized by a set of parameters w
  • Given an input x, for the model predicts y_hat = f(x; w) for regression, or the model predicts the probability of each possible class for classification
  • Define a Lost function L(y, y_hat) for regression, or L(y, P(y=a | x), P(y=b | x) …), find the parameters w to minimize L

This problem is typically viewed as an optimization problem and uses a gradient descent approach to solve it.


Source de l’article sur DZONE (AI)

Of all the major league sports in the United States, basketball is the most balletic…in my humble opinion. Basketball demonstrates a fluidity of complex full-body motion all the while interactively and iteratively guiding and correcting the trajectory of a ball which repeatedly rebounds from the hard court surface. Watching real basketball players drive through the crowd toward the hoop gives us a hint of the artfulness. Watching it in slow motion makes us stare in wonder at the complexity of the performance.

Transitioning to the world of video games (where many sports seem to find their way) the observer has quite a different impression watching today’s state-of-the-art synthetic players. The rendered players go through the motions, but the simulation just doesn’t seem real. Even though the characters themselves look quite good in static poses there is something clearly counterfeit about how they move. No matter how great the skills of the animator are, it seems impossible to specify all of the angular velocities at all of the joints for even the most basic moves. It’s not that we search to find subtle flaws in their movement, but rather that we are instantly struck with how unnatural these players are.


Source de l’article sur DZONE (AI)

Businesses have always been at the forefront as early adopters of new technologies. Advancements in computing like Machine Learning have already made a notable impact on the business world. With business operations and processes spread across varying levels, the inclusion of a Machine Learning framework can prove worthwhile in increasing efficiency, productivity, and speed.

Machine Learning has found widespread acceptance among enterprises. MIT Technology Review and Google Cloud recently published a report based on their studies in Machine Learning and its adoption. The reports state that about 60 percent of the respondents have already implemented Machine Learning into their business.


Source de l’article sur DZONE (AI)