Articles

Libérez vos ingénieurs logiciels avec Unblocked.

Libérez vos ingénieurs logiciels des contraintes du travail en équipe grâce à Unblocked. Une plateforme qui facilite la collaboration et l’innovation.

## Développeurs passent des semaines ou même des mois à embarquer dans une nouvelle entreprise. Se mettre à niveau dans une nouvelle base de code prend du temps. Pendant ce temps, le développeur aura de nombreuses questions (comme il se doit)! Cependant, ces questions interrompent les autres membres de l’équipe qui doivent arrêter ce qu’ils font pour fournir des réponses.

La plupart des organisations d’ingénierie font face au dilemme de s’assurer que le nouveau développeur obtient le soutien dont il a besoin sans ralentir trop le reste de l’équipe.

Software like Stack Overflow for Teams can help. Stack Overflow for Teams is a private, secure platform for teams to ask questions, share knowledge, and find answers. It’s a great way to ensure new developers have the support they need without disrupting the rest of the team.

Les développeurs passent des semaines, voire des mois, à s’intégrer à une nouvelle entreprise. Il faut du temps pour se familiariser avec un nouveau code source. Pendant ce temps, le développeur aura beaucoup de questions (et c’est normal !). Cependant, ces questions interrompent les autres membres de l’équipe qui doivent alors arrêter ce qu’ils font pour fournir des réponses.

La plupart des organisations d’ingénierie font face au dilemme de s’assurer que le nouveau développeur obtienne le soutien dont il a besoin sans trop ralentir le reste de l’équipe.

Des logiciels tels que Stack Overflow for Teams peuvent aider. Stack Overflow for Teams est une plate-forme privée et sécurisée pour les équipes afin de poser des questions, partager des connaissances et trouver des réponses. C’est un excellent moyen de s’assurer que les nouveaux développeurs disposent du soutien dont ils ont besoin sans perturber le reste de l’équipe.

Source de l’article sur DZONE

Un plan pour une observabilité complète.

Pour obtenir une observabilité complète, il est important de mettre en place un plan d’action bien défini. Découvrez comment le réaliser !

Rapport de tendances 2023 sur l’observabilité et les performances des applications de DZone

En 2023, le rapport sur les tendances en matière d’observabilité et de performance des applications de DZone révèle que le codage est un élément clé de l’observabilité. Les développeurs peuvent utiliser des outils tels que le codage pour créer des applications plus robustes et plus fiables. Le codage permet aux développeurs de créer des applications qui sont plus faciles à surveiller et à maintenir. Il permet également aux développeurs de mieux comprendre le comportement des applications et de les améliorer en conséquence. En outre, le codage permet aux développeurs d’accéder à des données plus précises et plus complètes, ce qui leur permet de prendre des décisions plus éclairées.

Le codage est également un outil essentiel pour améliorer la performance des applications. Les développeurs peuvent utiliser le codage pour optimiser le code et améliorer la vitesse et la stabilité des applications. En outre, le codage permet aux développeurs de créer des applications qui sont plus faciles à surveiller et à maintenir. Les développeurs peuvent également utiliser le codage pour créer des applications qui sont plus sûres et plus fiables. Enfin, le codage permet aux développeurs de mieux comprendre le comportement des applications et d’identifier rapidement les problèmes.

En conclusion, le codage est un outil essentiel pour améliorer l’observabilité et la performance des applications. Les développeurs peuvent utiliser le codage pour créer des applications plus robustes et plus fiables, ainsi que pour améliorer la vitesse et la stabilité des applications. Le codage permet également aux développeurs d’accéder à des données plus précises et plus complètes, ce qui leur permet de prendre des décisions plus éclairées. Pour en savoir plus sur les tendances en matière d’observabilité et de performance des applications, consultez le rapport sur les tendances 2023 d’Observability and Application Performance de DZone.

Source de l’article sur DZONE

Former des données avec ChatGPT : Guide pour développeurs

Apprenez à former des données avec ChatGPT et découvrez comment les développeurs peuvent tirer le meilleur parti de cette technologie puissante !

## Le lancement de ChatGPT par OpenAI a été transformateur pour l’intelligence conversationnelle AI. Impressionnant hors de la boîte, les capacités de ChatGPT sont intrinsèquement limitées par ses données d’entraînement fixes de 2021. Pour les développeurs de logiciels et les entreprises technologiques, l’entraînement de ChatGPT sur des jeux de données personnalisés est essentiel pour créer des assistants IA personnalisés qui évoluent avec votre entreprise.

Dans ce guide complet, nous explorerons les meilleures pratiques pour les équipes de logiciels afin de former des modèles ChatGPT personnalisés à l’aide de techniques telles que le réglage fin et la lecture interactive MEMWALKER.

Testing is a critical part of training ChatGPT models. It’s important to evaluate the performance of your model against a test dataset to ensure that it’s accurately predicting the desired output. Testing also helps identify any potential issues with the model, such as overfitting or underfitting. To get the most out of testing, it’s important to use a variety of metrics, such as accuracy, precision, recall, and F1 score.

Le lancement de ChatGPT par OpenAI a été transformateur pour l’intelligence conversationnelle IA. Impressionnant à l’état brut, les capacités de ChatGPT sont intrinsèquement limitées par ses données d’entraînement fixes de 2021. Pour les développeurs de logiciels et les entreprises technologiques, l’entraînement de ChatGPT sur des ensembles de données personnalisés est essentiel pour créer des assistants IA adaptés à votre entreprise.

Dans ce guide complet, nous explorerons les meilleures pratiques pour les équipes de logiciels afin de former des modèles ChatGPT personnalisés à l’aide de techniques telles que le réglage fin et la lecture interactive MEMWALKER.

Le test est une étape essentielle de l’entraînement des modèles ChatGPT. Il est important d’évaluer les performances de votre modèle sur un jeu de données de test pour s’assurer qu’il prédit correctement la sortie souhaitée. Les tests permettent également d’identifier tout problème potentiel avec le modèle, tel que le surapprentissage ou le sous-apprentissage. Pour tirer le meilleur parti des tests, il est important d’utiliser une variété de métriques, telles que la précision, la précision, le rappel et le score F1.

Source de l’article sur DZONE

Votre base de code est un garage encombré.

Votre mission: le nettoyer!

Vous êtes prêt à relever le défi? Alors, allons-y! Débroussaillons ce garage encombré et transformons-le en une base de code bien organisée.

## Code inutilisé ajoute du temps et une charge pour maintenir la base de code et le retirer est le seul remède pour ce côté de « plus de cloche ». Malheureusement, il n’est pas toujours évident que les développeurs peuvent supprimer certain code sans casser l’application. À mesure que la base de code devient encombrée et difficile à gérer, les équipes de développement peuvent s’enliser dans le code mystère qui ralentit le développement et abaisse le moral.

Les données non utilisées ajoutent du temps et une charge supplémentaire à la maintenance du code et la seule solution à ce problème est de le supprimer. Malheureusement, il n’est pas toujours évident de savoir si les développeurs peuvent supprimer certaines données sans casser l’application. À mesure que la base de code devient encombrée et difficile à gérer, les équipes de développement peuvent se retrouver coincées dans un code mystérieux qui ralentit le développement et abaisse le moral.

Vous vous souvenez de la première fois que vous êtes entré dans votre garage, vide et étincelant, bâillant avec la promesse de protéger vos véhicules et outils électriques ? Comment était-il la dernière fois que vous y êtes entré ? Si vous êtes comme beaucoup d’entre nous, le désordre des boîtes fermées depuis longtemps vous nargue chaque fois que vous les contournez, perdant précieuses minutes avant de pouvoir atteindre les objets dont vous avez besoin alors que votre voiture est garée dans l’allée. Malheureusement, les équipes de développement ont un problème similaire avec leur code source, qui s’est transformé en un fouillis encombré.

Heureusement, il existe des moyens pour aider les équipes à nettoyer leur code source. L’utilisation de l’analyse statique des données peut aider à identifier les données non utilisées et à les supprimer. L’analyse statique des données est une méthode pour analyser le code source sans exécuter l’application. Cela permet aux développeurs de trouver facilement les données non utilisées et de les supprimer, ce qui réduit la complexité du code et améliore la qualité du logiciel. De plus, l’analyse statique des données peut aider à identifier les erreurs potentielles et à améliorer la sécurité du logiciel. Enfin, elle peut aider à réduire le temps de développement et à améliorer la productivité des développeurs.

Source de l’article sur DZONE

Alternatives à GitHub pour les projets d'apprentissage machine.

GitHub est un outil très populaire pour le développement de projets, mais il existe d’autres alternatives pour les projets d’apprentissage machine. Découvrez-les ici!

Alternatives populaires à GitHub pour les projets d’apprentissage automatique

2. GitLab (gitlab.com)

GitLab is an all-in-one platform that offers a wide range of features, including code review, issue tracking, and project management. It is an ideal choice for those who are looking for a comprehensive solution for their machine learning projects. It also provides an integrated CI/CD pipeline to automate the process of building, testing, and deploying ML models. Moreover, it offers a robust security system to ensure that your data remains safe and secure.

3. Bitbucket (bitbucket.org)

Bitbucket is another popular platform for managing machine learning projects. It is a great choice for teams that are looking for a powerful yet simple solution to manage their projects. It provides a comprehensive set of features, including code review, issue tracking, and project management. Additionally, it offers an integrated CI/CD pipeline to automate the process of building, testing, and deploying ML models.

Dans le monde technologique en constante évolution, la recherche continue de plateformes efficaces pour rationaliser les projets d’apprentissage automatique est toujours persistante. Il est indéniable que GitHub a ouvert un chemin facile pour les développeurs du monde entier. Cependant, nous comprenons la nécessité de la diversité et de l’innovation dans ce domaine. C’est pourquoi nous vous présentons les meilleures alternatives à GitHub qui peuvent révolutionner votre approche des projets d’apprentissage automatique. Plongeons-nous dans certaines de ces plateformes qui offrent des fonctionnalités et des fonctionnalités robustes qui peuvent facilement donner à GitHub un combat.

Alternatives populaires à GitHub pour les projets d’apprentissage automatique

1. DVC (dvc.org)

Le contrôle de version des données (DVC) est un puissant outil permettant une gestion et une collaboration rationalisées des projets. Fondamentalement, il simplifie la gestion des données en s’intégrant étroitement à Git, ce qui permet de suivre les modifications des données et des modèles de manière méticuleuse, similaire à la façon dont Git suit les variations du code. Cela favorise une approche plus organisée pour gérer de grands jeux de données et apporte un plus grand degré de reproductibilité, car les membres d’équipe peuvent facilement revenir aux versions précédentes si nécessaire.

2. GitLab (gitlab.com

Source de l’article sur DZONE

Qu'est-ce qu'une file d'attente de fusion et pourquoi l'utiliser ?

Une file d’attente de fusion est un outil pratique qui peut être utilisé pour gérer et organiser les demandes d’accès à des ressources limitées. Découvrez pourquoi cette méthode est si utile !

C’est une bonne question, n’est-ce pas? En effet, si ce n’était qu’un terme peu connu il y a quelques mois, les files d’attente de fusion sont de plus en plus discutées. Entre les annonces des leaders comme GitHub et les vraies solutions techniques, les files d’attente de fusion sont de plus en plus adoptées par les équipes de développement logiciel.

La question est bonne, n’est-ce pas ? En effet, si ce terme était encore peu connu il y a quelques mois, les files d’attente de fusion sont de plus en plus discutées. Entre les annonces des leaders comme GitHub et les solutions techniques réelles, les files d’attente de fusion sont de plus en plus adoptées par les équipes de développement logiciel.

Vous plongerez donc dans ce sujet pour comprendre ce qu’est une file d’attente de fusion, dans quelles situations elles sont utiles mais aussi comment elles fonctionnent en pratique.

Une file d’attente de fusion est un outil qui permet aux équipes de développement logiciel de gérer leurs demandes de fusion. Cela permet aux développeurs de soumettre leurs demandes de fusion et aux responsables de les accepter ou de les rejeter. Les files d’attente de fusion peuvent être utilisées pour gérer le flux de travail des demandes de fusion, pour organiser le travail et pour faciliter le processus de test et de validation.

Les files d’attente de fusion sont particulièrement utiles lorsque les équipes de développement sont composées de plusieurs personnes. Elles permettent aux développeurs de soumettre leurs demandes de fusion et aux responsables d’accepter ou de rejeter ces demandes. Les files d’attente de fusion peuvent également être utilisées pour surveiller le processus de test et de validation des demandes de fusion. Cela permet aux responsables d’avoir une vue d’ensemble des demandes et des tests en cours.

Enfin, les files d’attente de fusion peuvent être utilisées pour automatiser certaines tâches. Par exemple, lorsqu’une demande est acceptée, elle peut être automatiquement envoyée à un outil de test automatisé pour être testée. Cela permet aux équipes de développement d’effectuer des tests plus rapidement et plus efficacement. De plus, les outils peuvent être configurés pour envoyer des notifications aux développeurs lorsque des tests échouent, ce qui permet aux équipes de résoudre rapidement les problèmes.

Source de l’article sur DZONE

Déploiement d'infrastructure simplifié: exploiter Terraform et les bascules de fonctionnalités

Déployer des infrastructures complexes et fiables n’a jamais été aussi simple! Exploitez Terraform et les bascules de fonctionnalités pour un déploiement d’infrastructure simplifié.

Les avantages de l’utilisation des bascules de fonctionnalités avec Terraform

  • Improved safety: Feature toggles allow you to deploy new features or changes in a controlled environment, reducing the risk of unexpected errors or issues.
  • Faster deployments: By using feature toggles, you can quickly deploy new features or changes without having to wait for the entire infrastructure to be updated.
  • Increased flexibility: Feature toggles enable you to easily roll back changes or disable features without having to make any major changes to your infrastructure.
  • Better testing: Feature toggles allow you to test new features or changes in a controlled environment, ensuring that they are working as expected before deploying them in production.
  • Conclusion

    Feature toggles are a powerful technique that can be used to streamline the deployment process of your infrastructure. By using feature toggles with Terraform, you can improve the safety, speed, and flexibility of your deployments while also enabling better testing. This makes feature toggles an invaluable tool for organizations looking to optimize their infrastructure deployment process.

    Les avantages de l’utilisation des bascules de fonctionnalités dans Terraform

    L’utilisation de bascules de fonctionnalités avec Terraform offre plusieurs avantages qui améliorent l’efficacité, la sécurité et la flexibilité de votre processus de déploiement d’infrastructure. Quelques-uns des principaux avantages sont les suivants :

    • Sécurité améliorée : Les bascules de fonctionnalités vous permettent de déployer de nouvelles fonctionnalités ou modifications dans un environnement contrôlé, réduisant ainsi le risque d’erreurs ou de problèmes inattendus.
    • Déploiements plus rapides : En utilisant des bascules de fonctionnalités, vous pouvez déployer rapidement de nouvelles fonctionnalités ou modifications sans avoir à attendre que l’ensemble de l’infrastructure soit mise à jour.
    • Flexibilité accrue : Les bascules de fonctionnalités vous permettent de facilement annuler des modifications ou désactiver des fonctionnalités sans avoir à effectuer de grands changements sur votre infrastructure.
    • Meilleur test : Les bascules de fonctionnalités vous permettent de tester de nouvelles fonctionnalités ou modifications dans un environnement contrôlé, pour s’assurer qu’elles fonctionnent comme prévu avant de les déployer en production.
    • Logiciel pour la gestion des bascules de fonctionnalités

      Il existe plusieurs outils logiciels qui peuvent être utilisés pour gérer les bascules de fonctionnalités. Certains outils logiciels populaires comprennent LaunchDarkly, FeatureFlag.io et Flipper. Ces outils logiciels peuvent être intégrés à Terraform pour faciliter le déploiement et la gestion des bascules de fonctionnalités. Ces outils peuvent également être utilisés pour surveiller et analyser l’utilisation des bascules de fonctionnalités et leur impact sur les performances des applications et des infrastructures.

      Conclusion

      Les bascules de fonctionnalités sont une technique puissante qui peut être utilisée pour optimiser le processus de déploiement de votre infrastructure. En utilisant des bascules de fonctionnalités avec Terraform, vous pouvez améliorer la sécurité, la vitesse et la flexibilité de vos déploiements tout en permettant un

      Source de l’article sur DZONE

      Migrer de JUnit 4 à JUnit 5 : Guide pas à pas

      Migrer de JUnit 4 à JUnit 5 peut être intimidant. Dans ce guide, nous vous expliquerons pas à pas comment le faire facilement.

      ## JUnit, un des frameworks de test les plus populaires depuis longtemps

      The good news is that migrating from JUnit 4 to JUnit 5 is not as difficult as it seems. With the right tools and data, teams can make the switch quickly and easily. To help teams make the transition, we’ve put together a guide that covers the basics of JUnit 5 migration.

      JUnit est l’un des frameworks de test les plus populaires depuis longtemps, avec 85% des développeurs Java affirmant l’utiliser dans le sondage de 2021 de JetBrains. De plus, JUnit joue également un rôle crucial dans la pratique du TDD (développement piloté par les tests), une stratégie à la mode pour les équipes de développement du monde entier.

      Les développeurs utilisent JUnit pour mettre en œuvre des tests unitaires, ce qui leur permet d’améliorer la qualité du code et d’accélérer la programmation. La popularité de JUnit n’est pas surprenante, car elle contribue beaucoup à une productivité accrue pour livrer un code de qualité. Cela étant dit, certaines équipes continuent d’utiliser JUnit 4 et sont inquiètes des perturbations que pourrait causer la migration vers JUnit 5.

      La bonne nouvelle est que migrer de JUnit 4 à JUnit 5 n’est pas aussi difficile qu’il n’y paraît. Avec les bons outils et les bonnes données, les équipes peuvent effectuer le basculement rapidement et facilement. Pour aider les équipes à effectuer la transition, nous avons rédigé un guide qui couvre les bases de la migration vers JUnit 5.

      Source de l’article sur DZONE

      Faut-il adopter des outils d'IA pour votre équipe de développement ?

      L’utilisation des outils d’intelligence artificielle peut offrir des avantages considérables pour votre équipe de développement. Mais faut-il les adopter ?

      ## Dans le contexte de l’accroissement du buzz autour des outils d’IA, de nombreuses équipes de développement se retrouvent à devoir décider lesquels leur conviennent le mieux, quand les adopter et les risques potentiels de ne pas le faire. Alors que l’IA continue à poser plus de questions que de réponses, la peur de se laisser distancer par la concurrence plane pour beaucoup.

      Itamar also shares his insights on the importance of coding as a fundamental skill for developers, and how AI can help them stay ahead of the curve. Tune in to learn how to make the most out of AI tools and stay competitive in the ever-evolving tech world.

      Avec l’augmentation du buzz autour des outils d’IA, de nombreuses équipes de développement se retrouvent confrontées à la difficulté de décider lesquels répondent le mieux à leurs besoins, quand les adopter et les risques potentiels de ne pas le faire. Alors que l’IA continue à poser plus de questions que de réponses, la peur de se laisser distancer par la concurrence plane pour beaucoup.

      L’épisode de cette semaine de Dev Interrupted vise à dissiper ces incertitudes en accueillant le fondateur et PDG de CodiumAI, Itamar Friedman. Dans l’une de nos discussions les plus éclairantes de cette année, Itamar perce à travers le battage médiatique autour de l’IA, expliquant ce que les outils d’IA apportent à la table, comment discerner ceux qui augmenteraient vraiment vos équipes de développement et les stratégies pour identifier et expérimenter efficacement de nouveaux outils.

      Itamar partage également ses connaissances sur l’importance du codage comme compétence fondamentale pour les développeurs et comment l’IA peut les aider à rester à la pointe. Écoutez pour apprendre comment tirer le meilleur parti des outils d’IA et rester compétitif dans le monde technologique en constante évolution.

      Source de l’article sur DZONE

      Outils et technologies CI/CD : libérez le pouvoir de DevOps.

      Les outils et technologies CI/CD sont essentiels pour libérer le pouvoir de DevOps et optimiser votre cycle de développement. Découvrez comment!

      Dans le monde trépidant du développement logiciel, l’intégration et le déploiement continus (CI / CD) sont devenus des pratiques indispensables dans les services DevOps.

      Continuous Integration (CI)

      Continuous Integration is a practice that enables developers to integrate code into a shared repository frequently. This allows teams to detect and fix errors quickly, as well as identify potential conflicts between different branches of code. Jenkins is the most popular CI tool, offering a wide range of features such as automated builds, tests, and deployments. Additionally, Jenkins integrates with a variety of other tools, allowing developers to create complex pipelines for their CI/CD process.

      Continuous Delivery (CD)

      Continuous Delivery is the practice of automating the process of delivering software updates to production. This ensures that software updates are released more quickly and reliably. To achieve this, developers rely on tools like Ansible and Chef for configuration management and deployment automation. These tools allow developers to define the desired state of their infrastructure and automate the process of provisioning and configuring servers. Additionally, they enable teams to deploy applications to multiple environments with minimal effort.

      Conclusion

      In conclusion, CI/CD is an essential practice in DevOps services that enables teams to deliver software updates more frequently and reliably. To achieve this, developers rely on a range of cutting-edge tools and technologies such as version control systems, continuous integration tools, and continuous delivery tools. By leveraging these tools, teams can streamline their workflows and automate various stages of the development process, ensuring smooth and reliable software delivery.

      Système de contrôle de version (SCV)

      Une base solide pour tout processus CI / CD dans les services DevOps est un système de contrôle de version robuste. Git est le SCV le plus utilisé, offrant des capacités puissantes de branchement et de fusion. Les développeurs peuvent collaborer sans heurts, suivre les modifications et résoudre les conflits efficacement, ce qui garantit que le code reste stable et sécurisé. GitHub, GitLab et Bitbucket sont des plateformes populaires qui intègrent Git et offrent des fonctionnalités supplémentaires telles que le suivi des problèmes, les revues de code et la gestion de projet.

      Intégration continue (CI)

      L’intégration continue est une pratique qui permet aux développeurs d’intégrer fréquemment du code dans un dépôt partagé. Cela permet aux équipes de détecter et de corriger rapidement les erreurs, ainsi que d’identifier les éventuels conflits entre différentes branches de code. Jenkins est l’outil CI le plus populaire, offrant une gamme étendue de fonctionnalités telles que des builds automatisés, des tests et des déploiements. De plus, Jenkins s’intègre à une variété d’autres outils, permettant aux développeurs de créer des pipelines complexes pour leur processus CI / CD.

      Livraison continue (CD)

      La livraison continue est la pratique qui consiste à automatiser le processus de livraison des mises à jour logicielles en production. Cela garantit que les mises à jour logicielles sont publiées plus rapidement et plus fiablement. Pour y parvenir, les développeurs s’appuient sur des outils tels qu’Ansible et Chef pour la gestion de la configuration et l’automatisation du déploiement. Ces outils permettent aux développeurs de définir l’état souhaité de leur infrastructure et d’automatiser le processus de mise en place et de configuration des serveurs. De plus, ils permettent aux équipes de déployer des applications sur plusieurs environnements avec un effort minimal.

      Conclusion

      En conclusion, CI / CD est une pratique essentielle dans les services DevOps qui permet aux équipes de livrer des

      Source de l’article sur DZONE