Articles

Méthodes de sauvegarde et restauration de base de données SQL Server

Les bases de données SQL Server sont essentielles pour les entreprises. Apprenez à sauvegarder et à restaurer ces bases de données en utilisant des méthodes fiables et efficaces.

Dans SQL Server, la création d’une sauvegarde et la réalisation d’une opération de restauration sont essentielles pour assurer l’intégrité des données, la récupération après sinistre et l’entretien de la base de données. Voici un aperçu des procédures de sauvegarde et de restauration :

BACKUP DATABASE [DatabaseName] TO DISK = 'C:BackupDatabaseName.bak' WITH INIT;

2. Differential Database Backup

BACKUP DATABASE [DatabaseName] TO DISK = 'C:BackupDatabaseName.bak' WITH DIFFERENTIAL;

3. Transaction Log Backup

BACKUP LOG [DatabaseName] TO DISK = 'C:BackupDatabaseName.bak' WITH INIT;

Restore SQL Database Using Transact-SQL (T-SQL) Commands

1. Full Database Restore

RESTORE DATABASE [DatabaseName] FROM DISK = 'C:BackupDatabaseName.bak' WITH REPLACE;

2. Differential Database Restore

RESTORE DATABASE [DatabaseName] FROM DISK = 'C:BackupDatabaseName.bak' WITH RECOVERY;

3. Transaction Log Restore

RESTORE LOG [DatabaseName] FROM DISK = 'C:BackupDatabaseName.bak' WITH RECOVERY;

Architecture de sauvegarde et restauration de la base de données SQL Server

Dans SQL Server, créer une sauvegarde et effectuer une opération de restauration est essentiel pour assurer l’intégrité des données, la récupération en cas de sinistre et l’entretien de la base de données. Voici un aperçu des procédures de sauvegarde et de restauration :

Méthode 1. Sauvegarde et restauration de la base de données à l’aide de SQL Server Management Studio (SSMS)

Suivez les étapes SSMS pour sauvegarder la base de données SQL

  • Ouvrez SSMS et connectez-vous à votre instance SQL Server.
  • Faites un clic droit sur la base de données que vous souhaitez sauvegarder.
  • Accédez à « Tâches » > « Sauvegarde ».
  • Choisissez le type de sauvegarde (complète, différentielle, journal des transactions).
  • Définissez les options de sauvegarde, telles que la destination, le nom, la compression, etc.
  • Cliquez sur « OK » pour exécuter la sauvegarde.

Suivez les étapes SSMS pour restaurer la base de données SQL

  • Ouvrez SSMS et connectez-vous à votre instance SQL Server.
  • Faites un clic droit sur « Bases de données » > « Restaurer la base de données ».
  • Choisissez la source (dispositif ou fichier de sauvegarde).
  • Spécifiez les ensembles de sauvegarde à restaurer.
  • Configurez des options telles que les chemins des fichiers, l’état de récupération, etc.
  • Cliquez sur « OK » pour exécuter le processus de restauration.

Méthode 2. Sauvegarde et restauration de la base de données dans SQL Server à l’aide des commandes Transact-SQL (

Source de l’article sur DZONE

SAP et l’équipe Mercedes-AMG PETRONAS F1 Team s’allient pour optimiser les performances sur la piste de course

SAP devient le nouveau partenaire officiel de l’écurie.

Paris, le 28 novembre 2023 – A compter de 2024, SAP, leader mondial des logiciels d’entreprises, sera partenaire officiel de l’écurie Mercedes-AMG PETRONAS F1 Team. Le partenariat s’établira sur plusieurs années et l’écurie bénéficiera de plusieurs solutions SAP visant à réduire les coûts.

SAP devient le partenaire officiel de l’équipe Mercedes-AMG PETRONAS F1 Team pour accélérer l’efficacité et tirer parti de nouvelles données en vue d’optimiser les performances. L’équipe s’appuie sur le logiciel SAP S/4HANA Cloud pour évaluer la manière dont l’intelligence artificielle et les solutions cloud de SAP améliorent la prise de décisions, optimisent les ressources et assurent la durabilité de leur infrastructure informatique.

L’efficacité est la pierre angulaire du succès en Formule 1. Dans le cadre de ce partenariat,  la maîtrise des coûts et l’optimisation de la chaîne d’approvisionnement sont les deux deux domaines d’intervention privilégiés.

Les sportifs savent que la maîtrise des coûts en F1 limite les dépenses des équipes chaque saison, car elle n’engendre pas de pénalités sévères. L’équipe Mercedes-AMG PETRONAS F1 Team prévoit de gérer le plafond des coûts en utilisant la solution SAP S/4HANA Finance afin d’allouer, d’économiser et d’utiliser les ressources de manière plus efficace.

Grâce à la technologie SAP Business AI intégrée, l’équipe prévoit les coûts, les besoins budgétaires finaux et ainsi optimise à la fois la chaîne d’approvisionnement et les articles stockés.

Pour mener à bien ses opérations de pointe, l’écurie Mercedes-AMG PETRONAS F1 Team compte s’appuyer sur SAP S/4HANA Cloud private edition, pour un environnement cloud sécurisé et à l’épreuve du temps.

L’équipe peut également utiliser les solutions SAP Build et SAP Business Technology Platform pour instaurer une architecture d’entreprise transparente et intelligente. Ainsi, en regroupant les données et les systèmes provenant de diverses sources à travers toute l’organisation, Mercedes-AMG PETRONAS F1 Team réduira les délais d’approvisionnement des composants essentiels de la voiture et assurera un flux continu de pièces pendant les week-ends de course. 

La Formule 1 est l’un des sports les plus innovants au monde sur le plan technologique, où les améliorations progressives donnent des résultats significatifs. Compte tenu des conditions extrêmes dans lesquelles les équipes de Formule 1 évoluent, les sports mécaniques offrent une plateforme mondiale pour mettre en valeur les compétences et l’excellence en ingénierie.déclare Julia White, membre du conseil d’administration de SAP SE et directrice du marketing et des solutions. Mais au-delà des performances réalisées le jour de la course, il se passe beaucoup de choses en coulisses. SAP est fière de s’associer à l’équipe Mercedes-AMG PETRONAS F1 Team pour s’assurer que ses opérations soient aussi bien réglées que ses voitures. » 

Ce partenariat a la capacité de créer un nouveau standard pour l’industrie automobile. C’est en F1 que les dernières innovations de l’industrie automobile sont inventées et présentées en avant-première. Ensemble, SAP et l’écurie Mercedes-AMG PETRONAS F1 Team introduiront de nouvelles innovations soutenues par l’expertise de la Formule 1 et qui serviront les activités d’autres clients de SAP.

Nous sommes ravis d’annoncer que SAP est le partenaire officiel de l’équipe Mercedes-AMG PETRONAS F1 Team”, a déclaré Toto Wolff, PDG et directeur de l’équipe Mercedes-AMG PETRONAS F1 Team. “Nous partageons le même héritage et le même engagement en faveur de l’innovation et de l’amélioration, ce qui contribuera de manière significative à nos performances sur la piste. SAP est un leader mondial dans son domaine, et nous ne pouvions pas rêver d’un meilleur partenaire pour nous aider à améliorer notre efficacité en 2024 et au-delà.

 

À propos de SAP :

La stratégie de SAP est d’aider chaque organisation à fonctionner en « entreprise intelligente » et durable. En tant que leader du marché des logiciels d’application d’entreprise, nous aidons les entreprises de toutes tailles et de tous secteurs à opérer au mieux : 87 % du commerce mondial total est généré par nos clients. Nos technologies de Machine Learning, d’Internet des objets (IoT) et d’analyse avancée aident nos clients à transformer leurs activités en « entreprises intelligentes ». SAP permet aux personnes et aux organisations d’avoir une vision approfondie de leur business et favorise la collaboration pour qu’ils puissent garder une longueur d’avance sur leurs concurrents. Nous simplifions la technologie afin que les entreprises puissent utiliser nos logiciels comme elles le souhaitent, sans interruption. Notre suite d’applications et de services end-to-end permet aux clients privés et publics de 26 secteurs d’activité dans le monde entier, de fonctionner de manière rentable, de s’adapter en permanence et de faire la différence. Grâce à un réseau mondial de clients, de partenaires, d’employés et de leaders d’opinion, SAP aide le monde à mieux fonctionner et à améliorer la vie de chacun.

À propos de Mercedes-AMG PETRONAS F1 Team :

Mercedes-AMG PETRONAS F1 Team est l’équipe d’usine de Mercedes-AMG, qui concourt au sommet du sport automobile – le championnat du monde de Formule 1™ de la FIA. La Formule 1 est un sport qui ne ressemble à aucun autre. En combinant un travail d’équipe d’élite, des technologies et des innovations de pointe, une gestion performante et des compétences de conduite exceptionnelles, les équipes développent des voitures de course capables de rivaliser avec leurs concurrents dans un environnement à fort indice d’octane qui s’étend sur plus de 20 courses à travers les cinq continents tout au long de chaque saison.

L’équipe Mercedes-AMG PETRONAS F1 Team, basée dans les centres technologiques de Brackley et Brixworth au Royaume-Uni, rassemble plus de 1 000 personnes dévouées et déterminées qui conçoivent, développent, fabriquent et font courir les voitures pilotées par Lewis Hamilton, sept fois champion du monde, et George Russell, vainqueur du Grand Prix.

En remportant sept doubles championnats du monde consécutifs des pilotes et des constructeurs de 2014 à 2020 et en s’assurant un huitième succès consécutif record au championnat des constructeurs en 2021, l’équipe est l’une des plus performantes de l’histoire de ce sport.

Entre son retour en tant que constructeur en 2010 et la fin de la saison 2022, l’équipe Mercedes-AMG works a remporté 116 victoires, 264 podiums, 128 pole positions, 91 tours les plus rapides et 54 doublés en 259 courses.

Contact presse :

Sylvie Léchevin : sylvie.lechevin@sap.com / sap@the-arcane.com

The post SAP et Mercedes-AMG PETRONAS F1 Team s’allient pour optimiser les performances sur la piste de course appeared first on SAP France News.

Source de l’article sur sap.com

Qu'est-ce qu'une base de données vectorielle SQL ?

Une base de données vectorielle SQL est un système de gestion de données qui permet de stocker, gérer et extraire des informations.

## Les modèles de langue larges (LLMs) ont facilité de nombreuses tâches, comme la création de chatbots, la traduction de langues, la résumé de texte et bien d’autres. Autrefois, nous devions écrire des modèles pour différentes tâches et il y avait toujours le problème de leur performance. Maintenant, nous pouvons facilement effectuer la plupart des tâches grâce aux LLMs. Cependant, les LLMs ont quelques limites lorsqu’ils sont appliqués à des cas d’utilisation du monde réel. Ils manquent d’informations spécifiques ou à jour, ce qui entraîne un phénomène appelé hallucination où le modèle génère des résultats incorrects ou imprévisibles. Les bases de données vectorielles se sont avérées très utiles pour atténuer le problème d’hallucination dans les LLMs en fournissant une base de données de données spécifiques au domaine que les modèles peuvent référencer. Cela réduit les instances de réponses inexactes ou incohérentes.

Coding is an essential part of LLMs. It is used to create the algorithms that are used to train the model. It also helps in creating the architecture of the model, which is the way the model is structured. The code helps the model to understand the data and make predictions. It also helps in optimizing the performance of the model by making sure that it is using the right parameters and hyperparameters.

Les grandes modèles linguistiques (LLMs) ont rendu de nombreuses tâches plus faciles, comme la création de chatbots, la traduction de langue, le résumé de texte et bien d’autres. Dans le passé, nous devions écrire des modèles pour différentes tâches, et il y avait toujours le problème de leur performance. Maintenant, nous pouvons facilement faire la plupart des tâches avec l’aide des LLMs. Cependant, les LLMs ont quelques limitations lorsqu’elles sont appliquées à des cas d’utilisation du monde réel. Elles manquent d’informations spécifiques ou à jour, ce qui conduit à un phénomène appelé hallucination où le modèle génère des résultats incorrects ou imprévisibles.

Les bases de données vectorielles se sont avérées très utiles pour atténuer le problème de l’hallucination dans les LLMs en fournissant une base de données de données spécifiques au domaine que les modèles peuvent référencer. Cela réduit les cas de réponses inexactes ou incohérentes.

Le codage est une partie essentielle des LLMs. Il est utilisé pour créer les algorithmes qui sont utilisés pour entraîner le modèle. Il aide également à créer l’architecture du modèle, qui est la façon dont le modèle est structuré. Le code aide le modèle à comprendre les données et à faire des prédictions. Il aide également à optimiser les performances du modèle en s’assurant qu’il utilise les bons paramètres et hyperparamètres.

Source de l’article sur DZONE

Les piliers de la sécurité des API

La sécurité des API est un sujet important. Pour assurer une sécurité optimale, il est important de comprendre les piliers qui la sous-tendent.

Les API sont rapidement devenues un élément fondamental de la programmation moderne. Elles alimentent une vaste gamme d’avancées et d’innovations technologiques dans tous les secteurs. Les API sont essentielles au développement d’applications, à l’Internet des objets (IoT), au commerce électronique, aux services financiers numériques, au développement de logiciels et bien plus encore. Sans API, l’Internet tel que nous le connaissons n’existerait pas.

The architecture of an API is based on the concept of client-server. The client is the application that makes the request, and the server is the application that responds to the request. The client sends a request to the server, which then processes the request and returns a response. The response is usually in the form of data, such as a web page or an image. APIs are typically designed to be lightweight and efficient, so they can be used in a wide variety of applications.

Les API sont devenues rapidement un élément fondamental de la modernisation du développement logiciel. Elles alimentent une vaste gamme d’avancées technologiques et d’innovations dans tous les secteurs. Les API sont essentielles au développement d’applications, à l’Internet des Objets (IoT), au commerce électronique, aux services financiers numériques, au développement de logiciels et à bien plus encore. Sans API, l’Internet tel que nous le connaissons n’existerait pas.

Les API, ou interfaces de programmation d’application, sont des règles et des protocoles qui permettent à différentes applications logicielles de communiquer et d’interagir entre elles. Ils définissent les méthodes et les structures de données que les développeurs peuvent utiliser pour accéder à des fonctionnalités ou à des données spécifiques à partir d’un service ou d’une plateforme. Les API permettent aux développeurs de créer des applications qui peuvent tirer parti des fonctionnalités d’autres systèmes logiciels sans avoir à comprendre le fonctionnement interne de ces systèmes.

L’architecture d’une API est basée sur le concept de client-serveur. Le client est l’application qui fait la demande et le serveur est l’application qui répond à la demande. Le client envoie une demande au serveur, qui traite alors la demande et renvoie une réponse. La réponse est généralement sous forme de données, telles qu’une page Web ou une image. Les API sont généralement conçues pour être légères et efficaces, de sorte qu’elles puissent être utilisées dans une large gamme d’applications.

Source de l’article sur DZONE

Amélioration des performances des applications modernes

Les applications modernes sont de plus en plus complexes et nécessitent une amélioration des performances pour répondre aux exigences des utilisateurs. Cet article explorera les moyens d’améliorer les performances des applications modernes.

Rapport de tendances 2023 sur l’observabilité et les performances des applications de DZone

La télémétrie est un processus qui consiste à recueillir des données sur l’état et les performances des applications et des systèmes. Ces données sont ensuite analysées pour comprendre le comportement des applications et identifier les problèmes. La télémétrie est essentielle pour surveiller et gérer les performances des applications. Elle fournit des informations précieuses sur les performances, les erreurs et les anomalies. Les données recueillies par la télémétrie peuvent être utilisées pour améliorer la qualité et l’efficacité des applications.

L’observabilité est une notion plus large qui s’intéresse à la façon dont les systèmes et les applications sont conçus et comment ils sont surveillés. L’observabilité est une partie importante de l’architecture logicielle. Elle permet aux développeurs et aux administrateurs de systèmes de mieux comprendre le fonctionnement des applications et de les surveiller efficacement. L’observabilité permet aux développeurs de mieux comprendre leur architecture logicielle, de déboguer plus rapidement et de résoudre plus facilement les problèmes. Elle permet également aux administrateurs de systèmes de surveiller et de gérer les performances des applications.

En résumé, la télémétrie et l’observabilité sont des outils essentiels pour surveiller et gérer les performances des applications. La télémétrie fournit des informations précieuses sur les performances, les erreurs et les anomalies. L’observabilité permet aux développeurs et aux administrateurs de systèmes de mieux comprendre le fonctionnement des applications et de les surveiller efficacement. La bonne combinaison de ces outils peut aider les entreprises à améliorer leur architecture logicielle, à déboguer plus rapidement et à résoudre plus facilement les problèmes.

Source de l’article sur DZONE

Architecture de Patterns: Passerelle API

L’architecture de patterns est un concept important pour la conception et la mise en œuvre d’une passerelle API. Découvrez comment cela peut vous aider à améliorer votre système.

Qu’est-ce qu’une passerelle API ?

API Gateways are also used for testing purposes. They can be used to simulate the behavior of a real API and test the client’s response. This is especially useful when the API is not yet available or when the client needs to be tested with different types of requests.

Qu’est-ce qu’une passerelle API ?

Une passerelle API est un outil qui agit en tant qu’intermédiaire pour les demandes des clients qui recherchent des ressources à partir de serveurs ou de microservices. Il gère, route, agrège et sécurise les demandes API.

Comme pour les modèles que nous avons explorés précédemment, ceci est souvent décrit comme un modèle «contexte de microservices», mais ce n’est pas nécessairement le cas. Il pourrait être utile dans de nombreux cas «non microservices» et parfois ne devrait pas être utilisé dans les microservices.

Les passerelles API sont également utilisées à des fins de tests. Elles peuvent être utilisées pour simuler le comportement d’une véritable API et tester la réponse du client. Cela est particulièrement utile lorsque l’API n’est pas encore disponible ou lorsque le client doit être testé avec différents types de requêtes.

Les tests des passerelles API sont une étape importante pour s’assurer que l’API fonctionne correctement et qu’elle répond aux exigences des clients. Les tests peuvent être effectués en simulant des demandes réelles et en vérifiant si la réponse est correcte. Les tests peuvent également être effectués en simulant des scénarios d’erreur pour s’assurer que l’API gère correctement les erreurs.

Les tests peuvent également être effectués pour vérifier la sécurité de l’API. Les tests peuvent être effectués pour vérifier si l’API est vulnérable aux attaques, telles que les attaques par déni de service, les attaques par injection SQL et les attaques par déni de service distribué. Ces tests peuvent aider à s’assurer que l’API est sûre et ne peut pas être exploitée par des tiers malveillants.

Enfin, les tests peuvent également être effectués pour vérifier la performance de l’API. Les tests peuvent être effectués pour vérifier si l’API répond rapidement aux demandes et si elle peut gérer un grand nombre de demandes simultanées sans ralentir. Ces tests peuvent aider à s’assurer que l’API est performante et répond aux exigences des clients.

Source de l’article sur DZONE

Agilité et gestion continue des données : une synergie gagnante

.

L’agilité et la gestion continue des données sont deux aspects clés pour atteindre un succès durable. Découvrez comment ces deux piliers peuvent s’unir pour créer une synergie gagnante.

L’esprit agile dans le développement logiciel

L’architecture Agile et la gestion des données

L’architecture Agile est plus qu’un simple mot à la mode; c’est une mentalité qui met l’accent sur l’adaptabilité, la collaboration avec le client et le développement itératif. Mais ce qui est moins discuté, c’est comment la gestion des données s’intègre à cette image. Les données sont le sang de toute application et une mauvaise qualité des données peut avoir un effet en cascade sur tout votre projet.

En intégrant Agile et la gestion des données, vous pouvez accélérer votre cycle de développement et améliorer la qualité et la sécurité des données. Les méthodologies Agile peuvent aider à améliorer la qualité des données en permettant aux équipes de travailler en collaboration pour identifier et corriger les erreurs de données. En outre, les méthodologies Agile peuvent aider à améliorer la sécurité des données en permettant aux équipes de travailler en collaboration pour identifier et corriger les vulnérabilités de données.

Comment intégrer Agile et la gestion des données?

L’intégration d’Agile et de la gestion des données peut être réalisée en utilisant une variété de techniques. Les principes fondamentaux de l’architecture Agile peuvent être appliqués à la gestion des données pour améliorer la qualité et la sécurité des données. Par exemple, les principes Agile peuvent être appliqués à la gestion des données pour encourager l’utilisation d’une approche itérative, pour encourager une collaboration entre les équipes et pour favoriser une communication ouverte entre les équipes.

Les outils de gestion des données peuvent également être intégrés aux méthodologies Agile afin d’améliorer la qualité et la sécurité des données. Les outils de gestion des données peuvent être utilisés pour surveiller et contrôler l’utilisation des données, pour surveiller et contrôler l’accès aux données, pour surveiller et contrôler les modifications apportées aux données et pour surveiller et contrôler l’intégrité des données.

Enfin, les principes Agile peuvent être appliqués à la gestion des données pour encourager une approche axée sur les tests. Les tests peuvent être utilisés pour vérifier la qualité et la sécurité des données avant qu’elles ne soient mises en production. Les tests peuvent également être utilisés pour vérifier que les modifications apportées aux données n’ont pas d’impact négatif sur les performances ou la sécurité des applications.

Conclusion

En intégrant Agile et la gestion des données, vous pouvez accroître l’efficacité de votre cycle de développement tout en améliorant la qualité et la sécurité des données. En appliquant les principes Agile à la gestion des données, en int
Source de l’article sur DZONE

Routes pratiques pour une culture saine

Explorer les routes pratiques pour une culture saine est essentiel pour le bien-être et le développement personnel. Découvrons ensemble comment y parvenir !

## Récente sortie du rapport DORA « Accélérer l’état du DevOps » souligne encore une fois la valeur de la culture organisationnelle

The architecture of an organization is also essential for creating a generative culture. If you create an architecture that encourages collaboration, communication, and feedback, you’ll be able to create a culture of trust and high performance.

La récente sortie du Rapport d’état de l’accélération DevOps a une fois de plus mis en évidence la valeur de la culture organisationnelle. Si vous créez une culture générative avec une confiance élevée et une faible responsabilité, vous obtiendrez une amélioration de 30 % des performances de votre organisation.

Mettre à jour avec succès la culture d’une organisation entière dépend de la passion, du soutien et de la durée d’attention de son leader. Au niveau du terrain, lorsque vous prêtez attention aux signaux culturels, vous trouverez des moyens d’apporter des améliorations continues et mineures.

L’architecture d’une organisation est également essentielle pour créer une culture générative. Si vous créez une architecture qui encourage la collaboration, la communication et le feedback, vous serez en mesure de créer une culture de confiance et de hautes performances.

Pour créer une architecture qui favorise la collaboration, la communication et le feedback, vous devez mettre en place des structures organisationnelles qui encouragent le partage des informations et des connaissances. Vous pouvez également encourager les employés à travailler ensemble et à s’entraider. Vous pouvez également mettre en place des processus qui encouragent les employés à partager leurs idées et à s’exprimer librement.

Vous pouvez également créer un environnement où les employés peuvent partager leurs points de vue et leurs opinions sans crainte de représailles. Cela peut être fait en mettant en place des processus qui encouragent les commentaires constructifs et en donnant aux employés la possibilité de s’exprimer librement et sans crainte.

Enfin, vous pouvez encourager les employés à prendre des initiatives et à prendre des risques calculés. Vous pouvez le faire en mettant en place des processus qui encouragent les employés à prendre des décisions et à prendre des risques calculés. Vous pouvez également mettre en place des récompenses pour les initiatives réussies.

En résumé, l’architecture organisationnelle est essentielle pour créer une culture générative. En mettant en place des structures organisationnelles qui encouragent le partage des informations et des connaissances, en encourageant les employés à travailler ensemble et à s’entraider, en donnant aux employés la possibilité de s’exprimer librement et sans crainte et en encourageant les employés à prendre des initiatives et à prendre des risques calculés, vous pouvez créer une culture de confiance et de hautes performances.

Source de l’article sur DZONE

Réduire les Hallucinations LLM

Réduire les Hallucinations LLM est une tâche difficile, mais pas impossible. Nous allons découvrir ensemble les moyens pour y parvenir.

LLM Hallucination : Les Effets de l’IA Générative

One approach to reducing AI hallucinations is to simplify the architecture of the model. This involves reducing the number of layers and neurons, as well as reducing the complexity of the activation functions. Additionally, regularization techniques such as dropout and weight decay can be used to reduce overfitting. 

L’hallucination LLM fait référence au phénomène où de grands modèles linguistiques tels que des chatbots ou des systèmes de vision informatique génèrent des sorties non sensées ou inexactes qui ne correspondent pas aux vrais modèles ou objets. Ces faux résultats de l’IA proviennent de divers facteurs. Le surajustement à des données d’entraînement limitées ou biaisées est un grand coupable. Une grande complexité du modèle contribue également, permettant à l’IA de percevoir des corrélations qui n’existent pas.

Les grandes entreprises qui développent des systèmes génératifs d’IA prennent des mesures pour résoudre le problème des hallucinations de l’IA, bien que certains experts pensent que l’élimination complète des faux résultats ne soit pas possible.

Une approche pour réduire les hallucinations de l’IA consiste à simplifier l’architecture du modèle. Cela implique de réduire le nombre de couches et de neurones, ainsi que la complexité des fonctions d’activation. De plus, des techniques de régularisation telles que le dropout et le déclin des poids peuvent être utilisées pour réduire le surajustement.

Source de l’article sur DZONE

L'Impact de l'IoT sur l'Intégration des Données: Un Voyage Transformateur

.

L’Internet des Objets (IoT) a révolutionné la manière dont les données sont intégrées et utilisées. Découvrez comment cette transformation a un impact sur le voyage!

La relation intrinsèque entre l’IoT et l’intégration des données

The challenge of data integration is compounded by the sheer volume of data generated by IoT devices. The sheer number of devices, combined with their ability to generate data at high speeds, has resulted in an exponential growth in the amount of data that needs to be managed. This data must be integrated, analyzed, and acted upon in real-time. To do this, organizations must develop a comprehensive architecture that can handle the scale and complexity of the data.

L’intrinsèque relation entre l’IoT et l’intégration des données

La prolifération des appareils IoT a ajouté une nouvelle dimension au paysage déjà complexe de la gestion des données. Ces appareils produisent une variété de types de données, telles que des données en série temporelle, des journaux structurés et semi-structurés et même du texte non structuré provenant d’interfaces utilisateur. Ainsi, l’intégration des données est maintenant chargée de quelque chose de bien plus complexe que simplement assimiler des bases de données et des stockages en nuage ; il s’agit de comprendre un monde connecté par des milliards d’appareils. Comme l’a judicieusement déclaré la scientifique des données Hilary Mason : « Les données sont le matériau brut de l’ère de l’information ». Et en effet, la qualité et la forme de ce « matériau brut » ont considérablement évolué avec l’avènement de l’IoT.

Le défi de l’intégration des données est amplifié par le volume phénoménal de données générées par les appareils IoT. Le nombre considérable d’appareils, combiné à leur capacité à générer des données à grande vitesse, a entraîné une croissance exponentielle de la quantité de données à gérer. Ces données doivent être intégrées, analysées et traitées en temps réel. Pour ce faire, les organisations doivent développer une architecture globale qui puisse gérer l’ampleur et la complexité des données.

L’architecture IoT pour l’intégration des données

Pour réussir à intégrer les données IoT, les organisations doivent mettre en place une architecture qui prend en compte la variété et la vitesse des données. Cette architecture doit être capable de collecter, stocker, traiter et analyser les données en temps réel. Elle doit également être capable d’intégrer les données provenant de sources diverses et hétérogènes. Les technologies modernes telles que le streaming en temps réel, le traitement distribué et le traitement par lots peuvent être utilisés pour mettre en œuvre cette architecture. Les technologies d’intégration des données telles que les outils d’ETL (Extraction, Transformation et Chargement) peuvent également être utilisés pour intégrer les données provenant de différents systèmes.

La mise en place d’une architecture IoT pour l’intégration des données est essentielle pour tirer parti des avantages offerts par l’IoT. Une architecture robuste permet aux organisations de collecter et d’analyser les données à grande échelle afin de prendre des décisions plus rapides et plus précises. Elle

Source de l’article sur DZONE