Articles

Paris, le 2 mai 2024 — SAP annonce que la société suédoise DeLaval, du groupe Tetra Laval, a choisi SAP S/4HANA Cloud pour mettre en place son nouveau système ERP hébergé dans le cloud, dans le cadre de son programme de transformation globale.

 

Le producteur mondial de machines laitières et agricoles, qui compte aujourd’hui 18 usines dans le monde, a choisi de construire sa nouvelle architecture technologique dans le cloud. Un choix stratégique visant à standardiser les systèmes du Groupe ; à harmoniser les différentes nomenclatures et processus, ainsi que les données nécessaires au développement des nouvelles solutions pour ses clients. Une initiative qui s’inscrit dans la stratégie de DeLaval à devenir un partenaire encore plus performant pour ses clients, et à se transformer en une organisation « data-driven[1] ».

 

« Un ERP complètement nouveau, est plus qu’une simple mise à jour technique, c’est un véritable processus de changement et une transformation de l’ensemble de l’entreprise », a déclaré Niklas Falkeling, Directeur du programme informatique de DeLaval. « Nous avions besoin de repartir à zéro et de profiter des solutions standardisées qu’offre actuellement SAP et ses services cloud. Cela est nécessaire pour que nous puissions continuer à développer l’entreprise et devenir plus flexibles et agiles. »

 

Avec l’objectif de rendre la production alimentaire aussi durable et efficace que possible, la mise en œuvre de SAP S/4HANA Cloud est un programme mondial, pluriannuel et multi-business unit, visant à attirer davantage de talents, à améliorer les processus métiers et à tirer parti d’une technologie innovante. La prochaine étape pour accompagner DeLaval dans l’accélération de sa stratégie de croissance, est de renforcer son équipe avec des compétences SAP à Tumba en Suède, Gallin en Allemagne et Wroclaw en Pologne.

 

« Il s’agit d’un exemple concret de la façon de mener un programme de transformation globale », a déclaré Helle Dochedahl, Directrice Générale de SAP Nordic et Baltic. « DeLaval a une stratégie bien définie pour standardiser les dernières solutions business de SAP et unifier les processus internes, en engageant toutes ses parties prenantes. »

 

À propos de SAP :  

La stratégie de SAP est d’aider chaque organisation à fonctionner en « entreprise intelligente » et durable. En tant que leader du marché des logiciels d’application d’entreprise, nous aidons les entreprises de toutes tailles et de tous secteurs à opérer au mieux : 87 % du commerce mondial total est généré par nos clients. Nos technologies de Machine Learning, d’Internet des objets (IoT) et d’analyse avancée aident nos clients à transformer leurs activités en « entreprises intelligentes ». SAP permet aux personnes et aux organisations d’avoir une vision approfondie de leur business et favorise la collaboration pour qu’ils puissent garder une longueur d’avance sur leurs concurrents. Nous simplifions la technologie afin que les entreprises puissent utiliser nos logiciels comme elles le souhaitent, sans interruption. Notre suite d’applications et de services end-to-end permet aux clients privés et publics de 26 secteurs d’activité dans le monde entier, de fonctionner de manière rentable, de s’adapter en permanence et de faire la différence. Grâce à un réseau mondial de clients, de partenaires, d’employés et de leaders d’opinion, SAP aide le monde à mieux fonctionner et à améliorer la vie de chacun. Pour plus d’information, visitez www.sap.com.

 

Contact presse :  

Sylvie Léchevin : sylvie.lechevin@sap.com / sap@the-arcane.com

[1] Organisation pilotée par les données

The post DeLaval choisit SAP S/4HANA Cloud pour exploiter les avantages du cloud appeared first on SAP France News.

Source de l’article sur sap.com

Services de développement logiciel personnalisés et pilotés par les données pour optimiser le succès.

Les services de développement logiciel personnalisés et pilotés par les données sont la clé pour optimiser le succès de votre entreprise. Découvrez comment ces services peuvent vous aider à atteindre vos objectifs.

## La nécessité de solutions logicielles robustes et efficaces n’a jamais été aussi grande qu’aujourd’hui. Et la raison principale? Eh bien, les entreprises de toutes tailles et de tous les secteurs font de plus en plus appel aux services de développement logiciel spécialisés pour rester en tête sur le marché concurrentiel.

Le besoin de solutions logicielles robustes et efficaces n’a jamais été aussi grand qu’aujourd’hui. Et la principale raison ? Eh bien, les entreprises de toutes tailles et de tous les secteurs font de plus en plus appel aux services de développement logiciel spécialisés pour rester à la pointe du marché concurrentiel.

Lisez cet article plus loin alors que nous plongeons profondément dans le domaine du développement logiciel pour comprendre comment le développement logiciel personnalisé et les approches axées sur les données, lorsqu’elles sont combinées, peuvent être déterminantes pour le succès des entreprises modernes.

Les données sont l’un des principaux moteurs de la réussite des entreprises modernes. Les entreprises qui sont capables d’extraire des informations précieuses à partir de leurs données peuvent prendre des décisions plus éclairées et plus rapides, ce qui leur permet d’être plus compétitives. Cependant, pour tirer parti des données, les entreprises doivent disposer d’un système logiciel robuste et efficace qui puisse collecter, stocker et analyser les données. C’est là que le développement logiciel personnalisé entre en jeu.

Le développement logiciel personnalisé est une méthode de développement de logiciels qui permet aux entreprises de créer des solutions logicielles sur mesure qui répondent à leurs besoins spécifiques. Les développeurs logiciels peuvent créer des applications qui peuvent collecter, stocker et analyser les données pour aider les entreprises à prendre des décisions plus éclairées et plus rapides. De plus, le développement logiciel personnalisé peut également aider les entreprises à automatiser certaines tâches, ce qui peut leur permettre d’améliorer leur productivité et leur efficacité.

En conclusion, le développement logiciel personnalisé et les approches axées sur les données sont essentiels pour la réussite des entreprises modernes. Les entreprises qui investissent dans le développement logiciel personnalisé peuvent tirer parti des données pour prendre des décisions plus éclairées et plus rapides, ce qui leur permet d’être plus compétitives. De plus, le développement logiciel personnalisé peut également aider les entreprises à automatiser certaines tâches, ce qui peut leur permettre d’améliorer leur productivité et leur efficacité.

Source de l’article sur DZONE

Rôle de la Science des Données et de l'Analyse pour les Décisions Stratégiques

La science des données et l’analyse jouent un rôle crucial dans le processus de prise de décisions stratégiques. Elles offrent une vision claire et précise des informations nécessaires pour prendre les bonnes décisions.

Dans le monde d’aujourd’hui axé sur les données, les organisations se tournent vers la science des données et l’analyse pour obtenir un avantage concurrentiel et prendre des décisions stratégiques éclairées.

Data science est une discipline qui combine des techniques statistiques, des algorithmes et des technologies pour extraire des informations utiles à partir de données brutes. Les données peuvent être structurées ou non structurées, et peuvent provenir de sources internes ou externes. Les scientifiques des données utilisent ces informations pour comprendre et prédire les tendances, les comportements et les préférences des consommateurs.

L’analyse est le processus d’examen et d’interprétation des données pour en tirer des conclusions et prendre des décisions. L’analyse peut être descriptive, prédictive ou prescriptive. Les analystes peuvent utiliser des outils tels que le traitement de texte, les tableaux croisés dynamiques et les systèmes de gestion de bases de données pour analyser les données et générer des rapports.

2. Utilisation de la science des données et de l’analyse pour prendre des décisions stratégiques

Les entreprises peuvent utiliser la science des données et l’analyse pour prendre des décisions stratégiques. Les scientifiques des données peuvent analyser les données pour comprendre comment les consommateurs réagissent aux produits et services, ce qui permet aux entreprises de mieux cibler leurs efforts marketing. Les analystes peuvent également utiliser l’analyse prédictive pour prédire la demande future et aider les entreprises à prendre des décisions stratégiques sur la production, les stocks, les prix et autres.

Les entreprises peuvent également utiliser la science des données et l’analyse pour améliorer leurs processus et leurs opérations. Les scientifiques des données peuvent analyser les données pour comprendre comment les processus sont mis en œuvre et comment ils peuvent être améliorés. Les analystes peuvent également utiliser l’analyse prédictive pour prédire les résultats des tests et aider les entreprises à prendre des décisions sur la façon dont elles peuvent améliorer leurs processus.

3. Testez vos décisions stratégiques

Une fois que vous avez pris une décision stratégique, vous devez la tester avant de l’implémenter. La science des données et l’analyse peuvent vous aider à tester vos décisions stratégiques. Les scientifiques des données peuvent analyser les données pour comprendre comment une décision stratégique affectera les consommateurs et leurs comportements. Les analystes peuvent également utiliser l’analyse prédictive pour prédire le résultat d’une décision stratégique et aider les entreprises à prendre des décisions informées.

Les entreprises peuvent également utiliser la science des données et l’analyse pour tester leurs processus. Les scientifiques des données peuvent analyser les données pour comprendre comment un processus est mis en œuvre et comment il peut être amélioré. Les analystes peuvent également utiliser l’analyse prédictive pour prédire le résultat d’un test et aider les entreprises à prendre des décisions sur la façon dont elles peuvent améliorer leurs processus.

Conclusion

La science des données et l’analyse jouent un rô

Source de l’article sur DZONE

Construire des architectures analytiques pour alimenter des applications temps réel

Construire des architectures analytiques pour alimenter des applications temps réel est une tâche complexe qui nécessite une planification minutieuse et une mise en œuvre rigoureuse.

Comprendre le rôle des analyses hors ligne

Testing the Efficiency of Offline Analytics

In order to ensure that an offline analytics architecture is efficient and cost-effective, it’s important to test its performance and scalability. This can be done by running a series of tests that measure the time it takes to process a given dataset, as well as the accuracy of the results. These tests should be conducted on a regular basis to ensure that the architecture is able to handle the increasing volume and complexity of data. Additionally, it’s important to test the architecture’s ability to integrate with existing systems and applications, as well as its ability to scale up or down as needed.

Conclusion

Offline analytics architectures are essential for preparing and enhancing data before it’s ready for real-time application. Testing the efficiency and scalability of such architectures is key to ensuring that they can handle the increasing volume and complexity of data. By running regular tests and monitoring the performance of the architecture, businesses can ensure that their data is ready for real-time insights and applications.

Comprendre le rôle des analyses hors ligne

Les analyses hors ligne impliquent le processus de collecte, de traitement et d’analyse de grands volumes de données de manière par lots, souvent sur des périodes plus longues. Cela contraste avec les analyses en temps réel, qui se concentrent sur l’analyse des données lorsqu’elles sont générées, avec des résultats immédiats. Bien que les analyses en temps réel offrent l’avantage d’une prise de conscience rapide, les analyses hors ligne fournissent la base sur laquelle ces informations sont construites. Les architectures d’analyse hors ligne sont conçues pour gérer des jeux de données volumineux, nettoyer et transformer les données et générer des résultats agrégés qui peuvent ensuite être exploités dans des applications en temps réel.

Tester l’efficacité des analyses hors ligne

Pour s’assurer que les architectures d’analyse hors ligne sont efficaces et rentables, il est important de tester leurs performances et leur évolutivité. Cela peut être fait en exécutant une série de tests qui mesurent le temps nécessaire pour traiter un jeu de données donné, ainsi que la précision des résultats. Ces tests doivent être effectués régulièrement pour s’assurer que l’architecture est capable de gérer le volume et la complexité croissants des données. De plus, il est important de tester la capacité de l’architecture à s’intégrer aux systèmes et applications existants, ainsi qu’à son aptitude à évoluer vers le haut ou vers le bas selon les besoins.

Conclusion

Les architectures d’analyse hors ligne sont essentielles pour préparer et améliorer les données avant qu’elles ne soient prêtes pour une application en temps réel. Tester l’efficacité et la scalabilité de ces architectures est essentiel pour s’assurer qu’elles peuvent gérer le volume et la complexité croissants des données. En exécutant des tests réguliers et en surveillant les performances de l’architecture, les entreprises peuvent s’assurer que leurs données sont prêtes pour des informations et des applications en temps réel.

Source de l’article sur DZONE

Expliquer l'IIoT : exemples, technologies, avantages et défis.

L’IIoT (Internet des Objets Industriel) est un domaine en pleine expansion qui combine les technologies de l’information et de la communication pour améliorer l’efficacité et la productivité des processus industriels. Découvrez les exemples, technologies, avantages et défis de l’IIoT.

Qu’est-ce que l’Internet industriel des objets (IIoT) ?

IIoT technology is being used in a variety of industrial settings, from manufacturing to energy production. It’s enabling the development of smart factories, where machines are connected to the internet and can communicate with each other. This allows for greater automation, improved efficiency, and increased productivity. Additionally, IIoT technology is being used in predictive maintenance, where sensors monitor machinery and alert operators when maintenance is needed. This reduces downtime and improves safety.

Qu’est-ce que l’Internet Industriel des Objets (IIoT) ?

L’Internet Industriel des Objets (IIoT), ou IIoT, est un terme utilisé pour décrire l’application de la technologie de l’Internet des Objets (IoT) dans des environnements industriels. Il englobe l’intégration de capteurs avancés, de logiciels et de machines avec une connectivité Internet pour collecter, analyser et agir sur d’immenses quantités de données. Cette approche basée sur les données permet de prendre des décisions en temps réel et d’utiliser l’analyse prédictive, ce qui conduit à une efficacité opérationnelle améliorée, des coûts réduits et une qualité de produit améliorée.

L’IIoT est un composant clé de l’Industrie 4.0, la quatrième révolution industrielle, caractérisée par la fusion des technologies numériques, physiques et biologiques. Il révolutionne les industries traditionnelles, facilitant la transformation des processus manuels et intensifs en main-d’œuvre en opérations automatisées et basées sur les données.

La technologie IIoT est utilisée dans une variété de contextes industriels, allant de la fabrication à la production d’énergie. Elle permet le développement de usines intelligentes, où les machines sont connectées à Internet et peuvent communiquer entre elles. Cela permet une plus grande automatisation, une efficacité accrue et une productivité accrue. De plus, la technologie IIoT est utilisée dans la maintenance prédictive, où des capteurs surveillent les machines et alertent les opérateurs lorsqu’une maintenance est nécessaire. Cela réduit les temps d’arrêt et améliore la sécurité.

Source de l’article sur DZONE

Guide simple à l'ingénierie inverse de l'algorithme Twitter avec LangChain, Activeloop et DeepInfra

Découvrez comment utiliser LangChain, Activeloop et DeepInfra pour effectuer une ingénierie inverse de l’algorithme Twitter facilement et rapidement !

## Imaginez écrire un logiciel qui puisse comprendre, assister et même générer du code, comme le ferait un développeur expérimenté.

LangChain is a data-driven platform that enables developers to create, modify, and debug code faster and more efficiently. It works by analyzing code and extracting meaningful information from it. This data is then used to build models that can understand and generate code. The models are then used to generate code that is tailored to the user’s needs.

LangChain est une plateforme basée sur les données qui permet aux développeurs de créer, modifier et déboguer le code plus rapidement et plus efficacement. Il fonctionne en analysant le code et en extrayant des informations significatives de celui-ci. Ces données sont ensuite utilisées pour créer des modèles qui peuvent comprendre et générer du code. Les modèles sont ensuite utilisés pour générer du code adapté aux besoins de l’utilisateur.

LangChain nous permet d’atteindre un nouveau niveau de compréhension et de génération de code grâce à des modèles avancés tels que VectorStores, Conversational RetrieverChain et LLMs. Avec LangChain, il est possible d’imaginer un logiciel capable de comprendre, d’assister et même de générer du code, comme un développeur expérimenté le ferait. Grâce à cette technologie, les développeurs peuvent gagner du temps et de l’argent en réduisant le temps nécessaire pour créer, modifier et déboguer le code.

LangChain est un outil très puissant qui peut être utilisé par les développeurs pour améliorer leurs compétences et leur productivité. Il permet aux développeurs de comprendre le code plus rapidement et de le modifier plus facilement. En outre, il peut être utilisé pour générer du code à partir de données existantes ou pour créer des modèles qui peuvent être utilisés pour générer du code à partir de données nouvelles ou existantes. Enfin, LangChain peut être utilisé pour trouver des erreurs dans le code et les corriger rapidement.

Source de l’article sur DZONE

Stratégie de données en évolution à grande banque canadienne

La grande banque canadienne s’est engagée à mettre en œuvre une stratégie de données en évolution pour offrir une expérience client plus personnalisée et plus intuitive.

## Avec la quantité et la variété croissantes de données, les exigences réglementaires et législatives en constante évolution, de nouvelles capacités et techniques pour traiter les données, pour devenir une organisation axée sur les données, la CIBC traverse d’énormes changements dans tous les aspects de l’utilisation, de la gestion et de la gouvernance des données.

Avec la quantité et la variété croissantes de données, les exigences réglementaires et législatives en constante augmentation, de nouvelles capacités et techniques pour traiter les données, pour devenir une organisation axée sur les données, la CIBC traverse d’énormes changements dans tous les aspects de l’utilisation, de la gestion et de la gouvernance des données.

Pour répondre aux exigences de cette nouvelle réalité, la CIBC a embrassé le paradigme du maillage de données et a développé un motif de données générique à deux parties. Du côté des affaires, le motif a introduit une stratégie de produits de données pour définir les domaines de données et les produits de données de bout en bout détenus par les équipes de produits de données inter fonctionnelles. Du côté de la technologie, la CIBC a mis en œuvre une architecture de maillage de données pour soutenir la stratégie de produits de données. La partie centrale de cette architecture est représentée par une plateforme de gestion des données fournissant une plateforme partagée et des services de gestion et de gouvernance des données. Cet article présente et discute les principes directeurs qui sous-tendent la stratégie des données.

La plateforme de gestion des données est le cœur du maillage des données et fournit une base commune pour la gestion et la gouvernance des données. La plateforme est basée sur une base de données centralisée qui stocke toutes les données pertinentes pour le maillage des données. La plateforme offre également des services d’intégration, d’analyse, d’intelligence artificielle et d’apprentissage automatique qui peuvent être utilisés par les produits de données pour fournir des informations exploitables. La plateforme fournit également des services pour garantir que toutes les données sont sûres, conformes et accessibles aux personnes autorisées.

La plateforme de gestion des données est conçue pour s’adapter aux exigences changeantes en matière de gestion des données. La plateforme peut être étendue pour prendre en charge des technologies supplémentaires telles que le traitement en temps réel, l’analyse avancée et l’apprentissage automatique. La plateforme peut également être intégrée à des systèmes tiers pour fournir une vue intégrée des données. Enfin, la plateforme peut être étendue pour prendre en charge des fonctionnalités supplémentaires telles que la gouvernance des données, la protection des données et l’audit.

Source de l’article sur DZONE

Traitement de flux supérieur : l'impact d'Apache Flink sur l'architecture Data Lakehouse.

Le traitement de flux supérieur est une technologie qui offre de nombreux avantages aux entreprises. Apache Flink est l’un des principaux outils pour exploiter pleinement les avantages de l’architecture Data Lakehouse.

« Explorer le Paradigme du Data Lakehouse: Une Solution Prometteuse pour les Décisions Basées sur les Données »

Dans l’ère de la prise de décision basée sur les données, le paradigme du Data Lakehouse est apparu comme une solution prometteuse, réunissant le meilleur des data lakes et des data warehouses. En combinant la scalabilité des data lakes avec les fonctionnalités de gestion des données des entrepôts, les Data Lakehouses offrent une infrastructure de données hautement scalable, agile et rentable. Ils fournissent un support robuste pour les charges de travail analytiques et opérationnelles, permettant aux organisations d’extraire plus de valeur de leurs données.

Dans nos articles précédents, nous avons exploré en profondeur le concept des Data Lakehouses. Data Lakehouses: The Future of Scalable, Agile, and Cost-Effective Data Infrastructure a posé les bases en mettant en évidence les principaux avantages commerciaux des lakehouses. A New Era of Data Analytics: Exploring the Innovative World of Data Lakehouse Architectures a examiné de plus près les aspects architecturaux des lakehouses, tandis que Delta, Hudi et Iceberg: The Data Lakehouse Trifecta se sont concentrés sur les trois principales solutions lakehouse: Delta Lake, Hudi et Iceberg.

Afin de mieux comprendre comment le Data Lakehouse peut être mis en œuvre dans un environnement d’entreprise, nous allons maintenant examiner le processus de testing. Le testing est un élément essentiel du développement logiciel et est également très important pour l’implémentation réussie des Data Lakehouses. Le processus de testing permet aux organisations de s’assurer que leurs systèmes sont conformes aux exigences et aux spécifications fonctionnelles et techniques. Il permet également de vérifier que le système est prêt à être mis en production et qu’il fonctionne correctement.

Le testing des Data Lakehouses peut être divisé en trois étapes principales : la vérification des fonctionnalités, la validation des performances et la validation des données. La vérification des fonctionnalités consiste à vérifier que toutes les fonctionnalités du système sont correctement implémentées et qu’elles répondent aux exigences et aux spécifications fonctionnelles. La validation des performances consiste à vérifier que le système est capable de gérer le volume et la variété des données et qu’il est capable de fournir les résultats attendus dans les délais impartis. Enfin, la validation des données consiste à vérifier que les données sont correctement stockées et accessibles dans le système.

Le processus de testing des Data Lakehouses est essentiel pour s’assurer que le système est conforme aux exigences et qu’il fonctionne correctement. Il permet aux organisations d’identifier et de résoudre rapidement tout problème avant la mise en production, ce qui permet d’améliorer la qualité du système et d’accroître sa fiabilité. En outre, le testing permet aux organisations de s’assurer que leurs systèmes sont prêts à être mis en production et qu’ils sont capables de fournir les résultats attendus.

Source de l’article sur DZONE

Révolutionner le trading algorithmique : le pouvoir de l'apprentissage par renforcement

La technologie d’apprentissage par renforcement est en train de révolutionner le trading algorithmique. Elle offre aux traders des possibilités inédites pour améliorer leurs performances.

En tant que professionnels de la technologie, nous sommes déjà conscients que notre monde est de plus en plus axé sur les données. C’est particulièrement vrai dans le domaine des marchés financiers, où le trading algorithmique est devenu la norme, utilisant des algorithmes complexes pour exécuter des transactions à des vitesses et fréquences qui dépassent largement les capacités humaines. Dans ce monde où les millisecondes peuvent faire la différence entre le profit et la perte, le trading algorithmique offre un avantage en rendant le trading plus systématique et moins influencé par les biais émotionnels humains.

Mais que se passerait-il si nous pouvions aller plus loin? Et si nos algorithmes de trading pouvaient apprendre de leurs erreurs, s’adapter à de nouvelles conditions de marché et améliorer constamment leur performance au fil du temps? C’est là que l’apprentissage par renforcement, un domaine de pointe de l’intelligence artificielle, entre en jeu.

Source de l’article sur DZONE

Successful data-driven companies like Uber, Facebook, and Amazon rely on real-time analytics. Personalizing customer experiences for e-commerce, managing fleets and supply chains, and automating internal operations require instant insights into the freshest data.

To deliver real-time analytics, companies need a modern technology infrastructure that includes three things:

Source de l’article sur DZONE