Articles

Diriger le logiciel dans une ère dynamique.

Diriger le logiciel dans une ère dynamique nécessite une compréhension approfondie des technologies actuelles et des tendances à venir. Nous devons nous adapter et trouver des solutions innovantes pour réussir.

Dans le domaine des poursuites professionnelles, il existe une idée fausse commune selon laquelle gérer le développement logiciel est similaire à faire du vélo – une compétence statique qui, une fois acquise, peut être pédalée en avant avec des ajustements minimes. Cependant, dans le paysage en constante évolution de la technologie, une telle comparaison n’est pas seulement trop simpliste, mais peut entraîner de profondes erreurs de jugement en matière de leadership. Contrairement à la prévisibilité inébranlable d’une balade à vélo, le développement logiciel est un processus dynamique et en constante évolution qui défie la nature statique des analogies traditionnelles.

Le développement logiciel est un domaine qui évolue rapidement et qui ne peut pas être comparé à la conduite d’un vélo. Alors que nous célébrons le premier anniversaire de nos projets logiciels, il est important de comprendre que la gestion des projets logiciels est beaucoup plus complexe que de simplement conduire un vélo sur une route familière. Cette méconnaissance provient souvent de dirigeants qui, une fois maîtrisés le codage ou la gestion de projet, se retrouvent piégés dans un état d’esprit qui sous-estime la fluidité du processus de développement logiciel.

Pour comprendre pourquoi le développement logiciel est fondamentalement différent de la conduite d’un vélo, nous devons examiner les différents aspects du processus. Tout d’abord, le développement logiciel est un processus itératif qui nécessite une planification et une exécution minutieuses. Chaque étape du processus doit être testée et validée avant que le projet ne puisse passer à l’étape suivante. En outre, le développement logiciel implique souvent des changements et des ajustements en cours de route, ce qui nécessite une flexibilité et une réactivité constantes de la part des gestionnaires. Enfin, le développement logiciel peut être influencé par des facteurs externes tels que les tendances technologiques et les pratiques commerciales, ce qui signifie que les gestionnaires doivent être conscients des changements et s’adapter rapidement.

En conclusion, le développement logiciel est un processus dynamique qui nécessite une planification et une exécution minutieuses. Il est essentiel que les gestionnaires comprennent que le développement logiciel est très différent de la conduite d’un vélo et qu’il nécessite une flexibilité et une réactivité constantes pour s’adapter aux changements en cours de route. Les tests sont essentiels pour s’assurer que chaque étape du processus est validée avant de passer à l’étape suivante et pour s’adapter aux tendances technologiques et aux pratiques commerciales.

Source de l’article sur DZONE

SAP et l’équipe Mercedes-AMG PETRONAS F1 Team s’allient pour optimiser les performances sur la piste de course

SAP devient le nouveau partenaire officiel de l’écurie.

Paris, le 28 novembre 2023 – A compter de 2024, SAP, leader mondial des logiciels d’entreprises, sera partenaire officiel de l’écurie Mercedes-AMG PETRONAS F1 Team. Le partenariat s’établira sur plusieurs années et l’écurie bénéficiera de plusieurs solutions SAP visant à réduire les coûts.

SAP devient le partenaire officiel de l’équipe Mercedes-AMG PETRONAS F1 Team pour accélérer l’efficacité et tirer parti de nouvelles données en vue d’optimiser les performances. L’équipe s’appuie sur le logiciel SAP S/4HANA Cloud pour évaluer la manière dont l’intelligence artificielle et les solutions cloud de SAP améliorent la prise de décisions, optimisent les ressources et assurent la durabilité de leur infrastructure informatique.

L’efficacité est la pierre angulaire du succès en Formule 1. Dans le cadre de ce partenariat,  la maîtrise des coûts et l’optimisation de la chaîne d’approvisionnement sont les deux deux domaines d’intervention privilégiés.

Les sportifs savent que la maîtrise des coûts en F1 limite les dépenses des équipes chaque saison, car elle n’engendre pas de pénalités sévères. L’équipe Mercedes-AMG PETRONAS F1 Team prévoit de gérer le plafond des coûts en utilisant la solution SAP S/4HANA Finance afin d’allouer, d’économiser et d’utiliser les ressources de manière plus efficace.

Grâce à la technologie SAP Business AI intégrée, l’équipe prévoit les coûts, les besoins budgétaires finaux et ainsi optimise à la fois la chaîne d’approvisionnement et les articles stockés.

Pour mener à bien ses opérations de pointe, l’écurie Mercedes-AMG PETRONAS F1 Team compte s’appuyer sur SAP S/4HANA Cloud private edition, pour un environnement cloud sécurisé et à l’épreuve du temps.

L’équipe peut également utiliser les solutions SAP Build et SAP Business Technology Platform pour instaurer une architecture d’entreprise transparente et intelligente. Ainsi, en regroupant les données et les systèmes provenant de diverses sources à travers toute l’organisation, Mercedes-AMG PETRONAS F1 Team réduira les délais d’approvisionnement des composants essentiels de la voiture et assurera un flux continu de pièces pendant les week-ends de course. 

La Formule 1 est l’un des sports les plus innovants au monde sur le plan technologique, où les améliorations progressives donnent des résultats significatifs. Compte tenu des conditions extrêmes dans lesquelles les équipes de Formule 1 évoluent, les sports mécaniques offrent une plateforme mondiale pour mettre en valeur les compétences et l’excellence en ingénierie.déclare Julia White, membre du conseil d’administration de SAP SE et directrice du marketing et des solutions. Mais au-delà des performances réalisées le jour de la course, il se passe beaucoup de choses en coulisses. SAP est fière de s’associer à l’équipe Mercedes-AMG PETRONAS F1 Team pour s’assurer que ses opérations soient aussi bien réglées que ses voitures. » 

Ce partenariat a la capacité de créer un nouveau standard pour l’industrie automobile. C’est en F1 que les dernières innovations de l’industrie automobile sont inventées et présentées en avant-première. Ensemble, SAP et l’écurie Mercedes-AMG PETRONAS F1 Team introduiront de nouvelles innovations soutenues par l’expertise de la Formule 1 et qui serviront les activités d’autres clients de SAP.

Nous sommes ravis d’annoncer que SAP est le partenaire officiel de l’équipe Mercedes-AMG PETRONAS F1 Team”, a déclaré Toto Wolff, PDG et directeur de l’équipe Mercedes-AMG PETRONAS F1 Team. “Nous partageons le même héritage et le même engagement en faveur de l’innovation et de l’amélioration, ce qui contribuera de manière significative à nos performances sur la piste. SAP est un leader mondial dans son domaine, et nous ne pouvions pas rêver d’un meilleur partenaire pour nous aider à améliorer notre efficacité en 2024 et au-delà.

 

À propos de SAP :

La stratégie de SAP est d’aider chaque organisation à fonctionner en « entreprise intelligente » et durable. En tant que leader du marché des logiciels d’application d’entreprise, nous aidons les entreprises de toutes tailles et de tous secteurs à opérer au mieux : 87 % du commerce mondial total est généré par nos clients. Nos technologies de Machine Learning, d’Internet des objets (IoT) et d’analyse avancée aident nos clients à transformer leurs activités en « entreprises intelligentes ». SAP permet aux personnes et aux organisations d’avoir une vision approfondie de leur business et favorise la collaboration pour qu’ils puissent garder une longueur d’avance sur leurs concurrents. Nous simplifions la technologie afin que les entreprises puissent utiliser nos logiciels comme elles le souhaitent, sans interruption. Notre suite d’applications et de services end-to-end permet aux clients privés et publics de 26 secteurs d’activité dans le monde entier, de fonctionner de manière rentable, de s’adapter en permanence et de faire la différence. Grâce à un réseau mondial de clients, de partenaires, d’employés et de leaders d’opinion, SAP aide le monde à mieux fonctionner et à améliorer la vie de chacun.

À propos de Mercedes-AMG PETRONAS F1 Team :

Mercedes-AMG PETRONAS F1 Team est l’équipe d’usine de Mercedes-AMG, qui concourt au sommet du sport automobile – le championnat du monde de Formule 1™ de la FIA. La Formule 1 est un sport qui ne ressemble à aucun autre. En combinant un travail d’équipe d’élite, des technologies et des innovations de pointe, une gestion performante et des compétences de conduite exceptionnelles, les équipes développent des voitures de course capables de rivaliser avec leurs concurrents dans un environnement à fort indice d’octane qui s’étend sur plus de 20 courses à travers les cinq continents tout au long de chaque saison.

L’équipe Mercedes-AMG PETRONAS F1 Team, basée dans les centres technologiques de Brackley et Brixworth au Royaume-Uni, rassemble plus de 1 000 personnes dévouées et déterminées qui conçoivent, développent, fabriquent et font courir les voitures pilotées par Lewis Hamilton, sept fois champion du monde, et George Russell, vainqueur du Grand Prix.

En remportant sept doubles championnats du monde consécutifs des pilotes et des constructeurs de 2014 à 2020 et en s’assurant un huitième succès consécutif record au championnat des constructeurs en 2021, l’équipe est l’une des plus performantes de l’histoire de ce sport.

Entre son retour en tant que constructeur en 2010 et la fin de la saison 2022, l’équipe Mercedes-AMG works a remporté 116 victoires, 264 podiums, 128 pole positions, 91 tours les plus rapides et 54 doublés en 259 courses.

Contact presse :

Sylvie Léchevin : sylvie.lechevin@sap.com / sap@the-arcane.com

The post SAP et Mercedes-AMG PETRONAS F1 Team s’allient pour optimiser les performances sur la piste de course appeared first on SAP France News.

Source de l’article sur sap.com

Qu'est-ce qu'une base de données vectorielle SQL ?

Une base de données vectorielle SQL est un système de gestion de données qui permet de stocker, gérer et extraire des informations.

## Les modèles de langue larges (LLMs) ont facilité de nombreuses tâches, comme la création de chatbots, la traduction de langues, la résumé de texte et bien d’autres. Autrefois, nous devions écrire des modèles pour différentes tâches et il y avait toujours le problème de leur performance. Maintenant, nous pouvons facilement effectuer la plupart des tâches grâce aux LLMs. Cependant, les LLMs ont quelques limites lorsqu’ils sont appliqués à des cas d’utilisation du monde réel. Ils manquent d’informations spécifiques ou à jour, ce qui entraîne un phénomène appelé hallucination où le modèle génère des résultats incorrects ou imprévisibles. Les bases de données vectorielles se sont avérées très utiles pour atténuer le problème d’hallucination dans les LLMs en fournissant une base de données de données spécifiques au domaine que les modèles peuvent référencer. Cela réduit les instances de réponses inexactes ou incohérentes.

Coding is an essential part of LLMs. It is used to create the algorithms that are used to train the model. It also helps in creating the architecture of the model, which is the way the model is structured. The code helps the model to understand the data and make predictions. It also helps in optimizing the performance of the model by making sure that it is using the right parameters and hyperparameters.

Les grandes modèles linguistiques (LLMs) ont rendu de nombreuses tâches plus faciles, comme la création de chatbots, la traduction de langue, le résumé de texte et bien d’autres. Dans le passé, nous devions écrire des modèles pour différentes tâches, et il y avait toujours le problème de leur performance. Maintenant, nous pouvons facilement faire la plupart des tâches avec l’aide des LLMs. Cependant, les LLMs ont quelques limitations lorsqu’elles sont appliquées à des cas d’utilisation du monde réel. Elles manquent d’informations spécifiques ou à jour, ce qui conduit à un phénomène appelé hallucination où le modèle génère des résultats incorrects ou imprévisibles.

Les bases de données vectorielles se sont avérées très utiles pour atténuer le problème de l’hallucination dans les LLMs en fournissant une base de données de données spécifiques au domaine que les modèles peuvent référencer. Cela réduit les cas de réponses inexactes ou incohérentes.

Le codage est une partie essentielle des LLMs. Il est utilisé pour créer les algorithmes qui sont utilisés pour entraîner le modèle. Il aide également à créer l’architecture du modèle, qui est la façon dont le modèle est structuré. Le code aide le modèle à comprendre les données et à faire des prédictions. Il aide également à optimiser les performances du modèle en s’assurant qu’il utilise les bons paramètres et hyperparamètres.

Source de l’article sur DZONE

Maîtrise de l'ingénierie des modèles de langage AI.

La maîtrise de l’ingénierie des modèles de langage AI est une compétence essentielle pour les développeurs qui souhaitent créer des applications modernes.

Ingénierie de prompt, un aspect vital pour tirer le plein potentiel des modèles de langage IA

2. Testing

Testing is an important part of prompt engineering. It helps to identify any errors or inconsistencies in the instructions given to the model. This can be done by running the model on a set of test data and comparing the results with the desired output. This helps to identify any potential issues and allows for adjustments to be made accordingly.

3. Iterative Process

Prompt engineering is an iterative process. After testing, adjustments can be made to the instructions given to the model. This can include changing the wording, adding additional information, or providing more specific instructions. The process is repeated until the desired output is achieved.

Limitations of Prompt Engineering

Prompt engineering is not without its limitations. It can be difficult to write clear and specific instructions that are tailored to the task at hand. Additionally, the process can be time-consuming and requires a certain level of expertise in order to achieve the desired results. Finally, prompt engineering is not a one-size-fits-all solution and may not be suitable for all tasks.

Potential Applications of Prompt Engineering

Prompt engineering has a wide range of potential applications. It can be used to improve the accuracy of AI language models, such as natural language processing (NLP) and machine translation. It can also be used to create more engaging and interactive user experiences, such as chatbots and virtual assistants. Finally, prompt engineering can be used to develop more accurate and contextually relevant responses from AI systems.

Principes de l’ingénierie de prompt

1. Écrire des instructions claires et spécifiques

Le succès de l’ingénierie de prompt commence par fournir des instructions claires et non ambiguës. Clair ne signifie pas nécessairement une courte description. Être spécifique sur la sortie souhaitée aide le modèle à comprendre plus précisément la tâche. Par exemple, demandez à LLA d’être un expert dans le domaine que vous demandez.

2. Test

Le test est une partie importante de l’ingénierie de prompt. Il permet d’identifier toutes les erreurs ou incohérences dans les instructions données au modèle. Cela peut être fait en faisant fonctionner le modèle sur un jeu de données de test et en comparant les résultats avec la sortie souhaitée. Cela permet d’identifier tout problème potentiel et permet d’effectuer des ajustements en conséquence.

3. Processus itératif

L’ingénierie de prompt est un processus itératif. Après le test, des ajustements peuvent être apportés aux instructions données au modèle. Cela peut inclure le changement du mot, l’ajout d’informations supplémentaires ou la fourniture d’instructions plus spécifiques. Le processus est répété jusqu’à ce que la sortie souhaitée soit obtenue.

Limites de l’ingénierie de prompt

L’ingénierie de prompt n’est pas sans ses limites. Il peut être difficile d’écrire des instructions claires et spécifiques qui sont adaptées à la tâche à accomplir. De plus, le processus peut être long et nécessite un certain niveau d’expertise pour obtenir les résultats souhaités. Enfin, l’ingénierie de prompt n’est pas une solution unique et peut ne pas être adaptée à toutes les tâches.

Applications
Source de l’article sur DZONE

Walldorf, le 25 octobre 2023 – SAP annonce que le leader mondial de la technologie médicale, Siemens Healthineers AG, a choisi la solution RISE with SAP pour accompagner la transformation numérique de l’entreprise.

 

Grâce à sa collaboration stratégique avec SAP et la migration de ses systèmes de gestion, Siemens Healthineers entend exploiter tout le potentiel d’innovation du cloud. Siemens Healthineers utilisera les solutions SAP S/4HANA Cloud, édition privée, SAP Business Technology Platform et SAP Signavio, ainsi que plusieurs autres solutions cloud pour rationaliser ses sources de données et améliorer les performances et la durabilité des processus métiers.

 

Après avoir mené avec succès un pilote de la solution RISE with SAP, Siemens Healthineers a ainsi constaté les avantages des solutions cloud de SAP en matière d’optimisation des opérations et d’amélioration de la gouvernance des processus.

 

« Nous sommes ravis de nous associer à SAP pour accélérer notre transformation digitale » a déclaré Stefan Henkel, Directeur de l’Information chez Siemens Healthineers. « En adoptant la technologie SAP, nous serons en mesure de réduire la complexité et de standardiser fortement nos processus, tout en tenant notre promesse d’être des pionniers dans le domaine des soins de santé. Cette migration vers le cloud est particulièrement importante pour nous, alors que nous continuons à investir dans la technologie pour soutenir notre forte croissance. »

 

En migrant vers le cloud via SAP S/4HANA Cloud, édition privée, Siemens Healthineers libère la puissance nécessaire pour faire évoluer ses opérations, ce qui lui permet de rester réactif face à l’évolution du paysage de la santé et des besoins de ses clients.

 

« Nous sommes fiers d’être le partenaire technologique de Siemens Healthineers et de participer à leur transformation » explique Thomas Saueressig, membre du Conseil Exécutif de SAP SE, SAP Product Engineering. « Ensemble, nous exploiterons tout le potentiel du cloud pour stimuler l’innovation, réduire les coûts, être plus flexibles et ainsi établir de nouvelles normes industrielles dans le domaine de la santé. »

 

A propos de SAP :

La stratégie de SAP est d’aider chaque organisation à fonctionner en « entreprise intelligente » et durable. En tant que leader du marché des logiciels d’application d’entreprise, nous aidons les entreprises de toutes tailles et de tous secteurs à opérer au mieux : 87 % du commerce mondial total est généré par nos clients. Nos technologies de Machine Learning, d’Internet des objets (IoT) et d’analyse avancée aident nos clients à transformer leurs activités en « entreprises intelligentes ». SAP permet aux personnes et aux organisations d’avoir une vision approfondie de leur business et favorise la collaboration pour qu’ils puissent garder une longueur d’avance sur leurs concurrents. Nous simplifions la technologie afin que les entreprises puissent utiliser nos logiciels comme elles le souhaitent, sans interruption. Notre suite d’applications et de services end-to-end permet aux clients privés et publics de 26 secteurs d’activité dans le monde entier, de fonctionner de manière rentable, de s’adapter en permanence et de faire la différence. Grâce à un réseau mondial de clients, de partenaires, d’employés et de leaders d’opinion, SAP aide le monde à mieux fonctionner et à améliorer la vie de chacun.

 

Contact presse :

Sylvie Lechevin : sylvie.lechevin@sap.com  / sap@the-arcane.com

The post SIEMENS Healthineers choisit RISE with SAP pour améliorer ses performances appeared first on SAP France News.

Source de l’article sur sap.com

Kubernetes : l'état des lieux

Kubernetes est un système open source qui permet de gérer des clusters de conteneurs. Découvrez l’état des lieux de ce puissant outil !

Rapport de tendance 2023 sur Kubernetes dans l’entreprise de DZone

Selon le rapport sur les tendances Kubernetes dans l’entreprise de DZone de 2023, Kubernetes est un véritable révolutionnaire dans le domaine du développement d’applications modernes. Il a révolutionné la manière dont nous gérons les applications conteneurisées. Certaines personnes ont tendance à penser que Kubernetes est une approche opposée au serveur sans état. Cela est probablement dû à la gestion liée au déploiement d’applications sur Kubernetes – la gestion des nœuds, la configuration des services, la gestion de charge, etc. La programmation sans serveur, célébrée pour sa puissance d’autoscaling et son efficacité économique, est connue pour son développement et son exploitation faciles des applications. Pourtant, les complexités introduites par Kubernetes ont conduit à une quête d’une approche plus automatisée – c’est précisément là que la programmation sans serveur entre en jeu dans Kubernetes.

Afin de tirer parti des avantages de la programmation sans serveur et de Kubernetes, les entreprises doivent trouver un moyen de combiner ces deux technologies. Les entreprises peuvent maintenant utiliser des outils tels que Knative pour combiner le meilleur des deux mondes. Knative est une plate-forme open source qui permet aux développeurs de créer et de déployer des applications sans serveur sur Kubernetes. En outre, Knative fournit des fonctionnalités telles que le routage intelligent, la scalabilité automatique et la gestion des données qui aident les développeurs à tirer le meilleur parti de Kubernetes. Les entreprises peuvent également utiliser des outils tels que Kubeless pour exécuter des fonctions sans serveur sur Kubernetes. Kubeless est un moteur de fonction sans serveur qui permet aux développeurs d’exécuter des fonctions sans serveur sur Kubernetes avec une faible latence et une grande scalabilité. Les entreprises peuvent également utiliser des outils tels que OpenFaaS pour créer des services sans serveur sur Kubernetes.

En combinant les avantages de la programmation sans serveur et de Kubernetes, les entreprises peuvent bénéficier d’une gestion plus efficace des données et d’une meilleure scalabilité. Les outils tels que Knative, Kubeless et OpenFaaS permettent aux entreprises de tirer parti des avantages de la programmation sans serveur et de Kubernetes pour gérer leurs applications et leurs données. Ces outils offrent aux entreprises une plus grande flexibilité et une meilleure gestion des données, ce qui permet aux entreprises de réduire leurs coûts et d’améliorer leurs performances. En utilisant ces outils, les entreprises peuvent gérer leurs applications et leurs données plus efficacement et à moindre coût.

En conclusion, la combinaison de la programmation sans serveur et de Kubernetes offre aux entreprises une plus grande flexibilité et une meilleure gestion des données. Les outils tels que Knative, Kubeless et OpenFaaS permettent aux entreprises de tirer parti des avantages de ces technologies pour gérer leurs applications et leurs données plus efficacement et à moindre coût. Les entreprises peuvent ainsi réduire leurs coûts et améliorer leurs performances en matière de gestion des données.

Source de l’article sur DZONE

Appliquer des méthodes d'apprentissage machine pour rechercher des défauts ferroviaires (2e partie)

Dans cette deuxième partie, nous allons explorer comment appliquer des méthodes d’apprentissage machine pour rechercher des défauts ferroviaires.

Assurer la sécurité du trafic ferroviaire par l’inspection non destructive des rails

L’inspection non destructive des rails afin de garantir la sécurité des transports ferroviaires est régulièrement effectuée à l’aide de différentes approches et méthodes. L’une des principales approches pour déterminer l’état opérationnel des rails ferroviaires est le test non destructif à ultrasons [1]. Actuellement, la recherche d’images de défauts de rail à l’aide des modèles de défauts reçus est effectuée par un être humain. La réussite du développement d’algorithmes de recherche et de classification des données permet de proposer l’utilisation de méthodes d’apprentissage automatique pour identifier les défauts des rails et réduire la charge de travail des humains en créant des systèmes experts.

La complexité de la création de tels systèmes est décrite dans [1, 3-6, 22] et est due, d’une part, à la variété des images graphiques obtenues lors de l’inspection ultrasonore multicanal des rails, et d’autre part, au petit nombre de copies de données avec des défauts (non équilibrés). Une des possibilités pour créer des systèmes experts dans ce domaine est une approche basée sur la décomposition de la tâche complexe d’analyse du défautogramme multicanal entier en canaux individuels ou en ensembles leur caractérisant les types individuels de défauts. 

L’utilisation d’un système expert pour la recherche et la classification des défauts des rails à l’aide d’un test non destructif à ultrasons peut être une solution efficace pour résoudre le problème. Les systèmes experts peuvent être utilisés pour analyser les données obtenues par ultrasons et fournir une estimation précise et fiable du niveau de sécurité des rails. Les systèmes experts peuvent également être utilisés pour prédire les défauts possibles et leur emplacement sur les rails, ce qui peut aider à améliorer la sécurité des transports ferroviaires.

Les systèmes experts peuvent également être utilisés pour analyser les données obtenues par ultrasons et fournir une estimation précise et fiable du niveau de sécurité des rails. Les systèmes experts peuvent également être utilisés pour prédire les défauts possibles et leur emplacement sur les rails, ce qui peut aider à améliorer la sécurité des transports ferroviaires. Les systèmes experts peuvent également être utilisés pour surveiller le niveau de sécurité des rails et prévenir les accidents ferroviaires. Les systèmes experts peuvent également être utilisés pour surveiller le niveau de sécurité des rails et prévenir les accidents ferroviaires. Les systèmes experts peuvent également être utilisés pour surveiller le niveau de sécurité des rails et prévenir les accidents ferroviaires.

Enfin, les systèmes experts peuvent être utilisés pour améliorer les processus d’inspection non destructive des rails. Les systèmes experts peuvent être utilisés pour automatiser le processus d’inspection non destructive des rails, ce qui permet d’accélérer le processus et d’améliorer la qualité des inspections. Les systèmes experts peuvent également être utilisés pour analyser les données obtenues par ultrasons et fournir une estimation précise et fiable

Source de l’article sur DZONE

Maîtriser Git

Apprenez à maîtriser Git et découvrez comment gérer vos projets de manière efficace et collaborative !

Git est un système de contrôle de révision distribué

The first area is the Working Directory. This is the area where you create and edit files. The Working Directory is the area where you do your day-to-day work.  

The second area is the Staging Area. This is the area where you add files to the repository. You can add files to the repository by using the git add command. The Staging Area is also known as the Index.  

The third area is the Git Repository. This is the area where Git stores all objects, such as commits, blobs, trees, and tags. The Git Repository is stored in the .git folder.  

The fourth area is the Remote Repository. This is the area where you store your project’s files in a remote location, such as GitHub or Bitbucket. You can push your changes to the Remote Repository by using the git push command.  

Les quatre domaines

Git stocke des objets dans quatre domaines illustrés ci-dessous. Ces quatre domaines représentent le flux des modifications dans un workflow Git typique.  

Le premier domaine est le Working Directory. C’est l’espace où vous créez et modifiez des fichiers. Le Working Directory est l’espace où vous faites votre travail quotidien.  

Le deuxième domaine est la Staging Area. C’est l’espace où vous ajoutez des fichiers au référentiel. Vous pouvez ajouter des fichiers au référentiel en utilisant la commande git add. La Staging Area est également connue sous le nom d’Index.  

Le troisième domaine est le Git Repository. C’est l’espace où Git stocke tous les objets, tels que les commits, les blobs, les arbres et les étiquettes. Le Git Repository est stocké dans le dossier .git.  

Le quatrième domaine est le Remote Repository. C’est l’espace où vous stockez les fichiers de votre projet à un emplacement distant, tel que GitHub ou Bitbucket. Vous pouvez envoyer vos modifications vers le Remote Repository en utilisant la commande git push.  

Base de données Git

Git utilise une base de données pour stocker des objets tels que les commits, les blobs, les arbres et les étiquettes. La base de données Git est basée sur un système de fichiers qui stocke des informations sur chaque objet dans le référentiel. Chaque objet est stocké sous forme de fichier et contient des informations sur l’objet, telles que son type et sa taille. Les fichiers sont stockés dans des répertoires qui sont organisés en arborescence.

Git utilise également une base de données pour stocker des informations sur les branches et les tags. Les branches sont des références qui pointent vers un commit spécifique et qui peuvent être utilisées pour suivre le développement d’un projet. Les tags sont des références qui pointent vers un commit spécifique et qui peuvent être utilisés pour marquer des versions spécifiques d’un projet.

Git utilise é

Source de l’article sur DZONE

Les pièges de l'utilisation de l'IA générale en développement logiciel : un cas pour une approche centrée sur l'humain.

Les développeurs logiciels sont confrontés aux risques liés à l’utilisation de l’intelligence artificielle générale. Une approche centrée sur l’humain est nécessaire pour éviter ces pièges.

## Avec le développement de l’intelligence artificielle générale, elle prend également sa place dans les emplois qui nécessitent des connaissances intellectuelles et de la créativité.

The primary challenge is testing. Testing is a critical step in the software development process, as it ensures that the code is functioning correctly and that the system is performing as expected. However, when it comes to General AI-based systems, testing can be a daunting task. This is because the system’s behavior is not predetermined, but rather determined by its own internal logic and learning algorithms. As such, it is difficult to anticipate how the system will behave in a given situation, making it difficult to test for potential bugs and errors.

Avec le développement de l’intelligence artificielle générale, elle prend également sa place dans les emplois qui nécessitent des connaissances intellectuelles et de la créativité. Dans le domaine du développement logiciel, l’idée d’utiliser les capacités cognitives de l’IA générale a suscité un intérêt considérable. L’idée d’un logiciel qui peut penser, apprendre et s’adapter comme un programmeur humain est séduisante et promet de rationaliser les processus de développement et de potentiellement révolutionner l’industrie. Cependant, sous le charme de surface se trouve un défi important : la difficulté de modifier les systèmes basés sur l’IA générale une fois qu’ils sont déployés.

L’IA générale, également connue sous le nom d’intelligence artificielle générale (AGI), incarne le concept des machines possédant une intelligence et une adaptabilité humaines. Dans le monde du développement logiciel, elle a le potentiel d’automatiser une multitude de tâches, allant du codage au débogage. Néanmoins, à mesure que nous plongeons dans les promesses et les périls de l’intégration de l’IA générale dans le processus de développement logiciel, une série de préoccupations et de défis critiques se présentent.

Le défi principal est le test. Le test est une étape essentielle du processus de développement logiciel, car il garantit que le code fonctionne correctement et que le système se comporte comme prévu. Cependant, lorsqu’il s’agit des systèmes basés sur l’IA générale, le test peut être une tâche redoutable. Cela est dû au fait que le comportement du système n’est pas prédéterminé, mais déterminé par sa propre logique interne et ses algorithmes d’apprentissage. Par conséquent, il est difficile de prévoir comment le système se comportera dans une situation donnée, ce qui rend difficile le test des bogues et des erreurs potentiels.

Source de l’article sur DZONE

Alternatives à GitHub pour les projets d'apprentissage machine.

GitHub est un outil très populaire pour le développement de projets, mais il existe d’autres alternatives pour les projets d’apprentissage machine. Découvrez-les ici!

Alternatives populaires à GitHub pour les projets d’apprentissage automatique

2. GitLab (gitlab.com)

GitLab is an all-in-one platform that offers a wide range of features, including code review, issue tracking, and project management. It is an ideal choice for those who are looking for a comprehensive solution for their machine learning projects. It also provides an integrated CI/CD pipeline to automate the process of building, testing, and deploying ML models. Moreover, it offers a robust security system to ensure that your data remains safe and secure.

3. Bitbucket (bitbucket.org)

Bitbucket is another popular platform for managing machine learning projects. It is a great choice for teams that are looking for a powerful yet simple solution to manage their projects. It provides a comprehensive set of features, including code review, issue tracking, and project management. Additionally, it offers an integrated CI/CD pipeline to automate the process of building, testing, and deploying ML models.

Dans le monde technologique en constante évolution, la recherche continue de plateformes efficaces pour rationaliser les projets d’apprentissage automatique est toujours persistante. Il est indéniable que GitHub a ouvert un chemin facile pour les développeurs du monde entier. Cependant, nous comprenons la nécessité de la diversité et de l’innovation dans ce domaine. C’est pourquoi nous vous présentons les meilleures alternatives à GitHub qui peuvent révolutionner votre approche des projets d’apprentissage automatique. Plongeons-nous dans certaines de ces plateformes qui offrent des fonctionnalités et des fonctionnalités robustes qui peuvent facilement donner à GitHub un combat.

Alternatives populaires à GitHub pour les projets d’apprentissage automatique

1. DVC (dvc.org)

Le contrôle de version des données (DVC) est un puissant outil permettant une gestion et une collaboration rationalisées des projets. Fondamentalement, il simplifie la gestion des données en s’intégrant étroitement à Git, ce qui permet de suivre les modifications des données et des modèles de manière méticuleuse, similaire à la façon dont Git suit les variations du code. Cela favorise une approche plus organisée pour gérer de grands jeux de données et apporte un plus grand degré de reproductibilité, car les membres d’équipe peuvent facilement revenir aux versions précédentes si nécessaire.

2. GitLab (gitlab.com

Source de l’article sur DZONE