Articles

The Kubernetes Native Gateway Series (Part 1): Envoy at Scale

Gloo Edge is our Kubernetes native API gateway based on Envoy.

It provides Authentication (OAuth, JWT, API keys, JWT, …), Authorization (OPA, custom, …), Web Application Firewall (based on ModSecurity), function discovery (OpenAPI based, Lambda, …), advanced transformations, and much more.

Source de l’article sur DZONE

If You Dare To Lead, Lead With Vulnerability

Just like a tortoise hides inside its shell and a porcupine’s sharp quills leap to attention when they sense danger, we human beings also put on protective armor when we feel threatened. Risky situations, anxiety from the unknowns, and the danger of being exposed evoke the same emotional response as the fear of being chased by a predator. 

We feel vulnerable. But instead of embracing vulnerability, accepting our fears, and leading with curiosity, we put on a shield of protection. We project confidence even when we are scared, speak with surety even when we are unsure, hide our mistakes with the fear of disapproval and avoid confrontation to save ourselves from the risk of emotional exposure. 

Source de l’article sur DZONE

Wix Vs WordPress: 3rd Round Knockout

Over the last fortnight one site builder has gone toe-to-toe with another, as Wix launched a marketing campaign aimed at attracting WordPress users, and instead attracted universal ire.

First, Wix sent out expensive headphones as gifts to key WordPress “influencers” in an attempt to lure them to the platform. Second, they produced a series of adverts that instead of promoting their own product, tried to imply that WordPress is so bad you’ll need mental health counselling to cope with it; it’s been widely frowned upon, but am I alone in thinking they’re not a million miles away from Apple’s anti-Windows adverts? No, I’m not.

Then, Wix made an attempt to go viral with an uncomfortable video in which a character portraying “WordPress” releases a “secret” message warning the community of “fake news” supposedly due to be released by Wix. The language and the styling is clear: WordPress is unhip daddio.

Unlike WordPress, Wix is a publicly owned company, it has an obligation to its shareholders to maximize its revenue. Had Wix targeted WordPress’ many failings, that would have been fair game. Had they gone after Shopify, or Webflow, or Squarespace, or one of the many other site builders on the market no one would have blinked an eye. Wix’s error wasn’t going after WordPress, or even the tactics used to do so, Wix’s mistake was in attacking the very community it was attempting to court.

I’m not a big fan of WordPress. I’ve built around a dozen sites in it over the years and we’ve never got along, WordPress and I. But I am a big fan of the ethos of WordPress; who doesn’t love free, open source software, built by volunteers?

The holy grail of marketing is transforming customers into evangelists — individuals who will bare their chests, paint their face with woad, and charge headlong onto social media at the merest hint of a perceived slight. You can’t buy them. It’s a loyalty that has to be cultivated over years, and requires more give than take. WordPress has those evangelists, people who see their careers in web design as intertwined with the CMS. No amount of free headphones is going to convert them to a closed system like Wix.

The irony is that Wix’s approach stemmed from the WordPress community itself. If it is going to celebrate “powering 40% of the Web” then it has to expect to make itself a target. If you’re an antelope, you don’t douse yourself in bbq sauce and strut around the waterhole where the lions like to hang out.

If the row rumbles on, it will eventually end in an apology and a promise from Wix to “do better.” But the truth is, all Wix did was confuse a community of people trying to build websites, with a competing business.

This time next year, Wix will still be recovering from the damage to its reputation, and WordPress will be telling us it powers 110% of the Web.

Source

The post Wix Vs WordPress: 3rd Round Knockout first appeared on Webdesigner Depot.


Source de l’article sur Webdesignerdepot

How To Run Test On macOS Using Selenium Safari Driver

We all know that Google Chrome is the most popular browser in the world. But do you know, with 17.24% of the overall browser market share, Safari is the second most popular one?

The reason behind Safari’s strong presence is that it is the default web browser for all Apple devices. And we know how much developers and coders love macOS, making it absolutely necessary to ensure that our websites’ are tested and optimized for all Safari versions.

Source de l’article sur DZONE

Poll: Is Environmentally Conscious Web Design Really Worth It?

We’re no longer arguing about whether climate change exists because climate change is now extensively documented. Instead, we’re arguing over whether climate change is a natural cycle or human-accelerated.

At this point, the reasonable best-case (yes, best-case) scenario is that global temperatures will rise by 2˚C — if we don’t meet our global emissions targets, then it will be higher.

A 2˚C rise in temperature means a rise in sea levels of approximately 20m in the next 100 years. Major cities, including New York and London, will be decimated. Florida will become an island off the coast of Georgia. Venice is in serious trouble, as is the whole of the Netherlands. Many low-lying island nations will cease to exist. If we do nothing, there may not be enough farmable land left to sustain the population.

According to sustainablewebdesign.org, the whole Internet currently churns out 3.8% of global carbon emissions. Next Tuesday is Earth Day 2021, making this a great time to think about your own sites’ carbon footprint.

The key to reducing a website’s carbon footprint is to use as little electricity as possible — including battery power because batteries need to be charged. Some simple ways to achieve this are using dark mode, limiting the amount of resource-hungry JavaScript you use, and limiting your site’s payload. Small incremental gains like these can radically reduce the damage your sites are doing, and conveniently they also happen to be good for UX.

But let’s look at the numbers. An environmentally consciously designed site that gets 100,000 page views per year will output around 0.055 tons of CO2 per annum. By comparison, the average human produces 4 tons of CO2 (in Western countries, it’s closer to 16 tons) over the same period. The world as a whole produces 43.1 billion tons of CO2 per year. If you redesign your site to reduce power usage by 10%, you’ll have solved 0.0000000000001% of the problem.

With such a small impact on such a huge problem, is it really worth changing how we design websites to limit climate change?

Featured image via USGS.

Source

The post Poll: Is Environmentally Conscious Web Design Really Worth It? first appeared on Webdesigner Depot.


Source de l’article sur Webdesignerdepot

L’ERP Intelligent : la clé pour renforcer la résilience financière aujourd’hui et demain

L’argent est roi, certes mais pas que. C’est également l’un des éléments clés pour assurer la résilience et la continuité de l’activité sur le long terme. Il joue un rôle dans les challenges qui touchent l’entreprise, comme par exemple l’expérience collaborateur et client, le partenariat avec les fournisseurs ou mêmes les résultats financiers. Avec SAP S/4HANA, les entreprises peuvent répondre à tous ces enjeux en optimisant leur bilan.

Selon les partenaires de McKinsey, Kevin Laczkowski et Mihir Mysore, il est essentiel de combiner les compétences centrales avec des leviers financiers (tels que l’optimisation du bilan) pour renforcer la résilience, en prévision d’une récession ou d’une reprise.

Pour obtenir un tel avantage concurrentiel, il faut disposer d’informations intelligentes issues d’une infrastructure technologique axée sur l’intégration. En intégrant étroitement les systèmes et les données communes, les entreprises peuvent tirer parti de la rapidité et de l’agilité des outils in-memory pour dégager des modèles et perspectives cachés. Ce faisant, les entreprises peuvent consolider leurs opérations, maintenir des relations étroites avec leurs clients, développer l’agilité des chaînes logistiques dynamiques et gérer les ressources de manière plus synchronisée.

Une résilience optimisée grâce à des données ERP en temps réel et une connectivité intelligente

Bien que les systèmes hérités puissent automatiser différentes parties des opérations de gestion, ils ne peuvent pas fournir les informations en temps réel nécessaires pour régler le problème des surstocks ou offrir un service client à l’instant t. Trop souvent, les décisions sont basées sur des modèles transactionnels historiques peu centrés sur le client et trop rigides pour laisser place aux idées novatrices qui nécessiteraient d’être distribuées et adaptées dans toute l’entreprise.

Dès que l’entreprise passe à un progiciel de gestion intégré (ERP) intelligent, c’est une plateforme pour la reprise, la croissance et la résilience qui prend vie. Et en cette ère criblée d’incertitudes, il est grand temps de prendre conscience de cette force. Mais les dirigeants doivent d’abord sélectionner et implémenter une solution ERP qui offre des avantages quantifiables à l’échelle de l’entreprise : depuis le service client, les ventes et les stocks, jusqu’à la gestion du fonds de roulement, du coût des articles, de la main-d’œuvre et des frais généraux.

Envisagez de passer à SAP S/4HANA. Ses retombées n’ont pas tant affaire avec la taille de l’entreprise et le secteur d’activité. Il s’agit surtout de mettre en place un système informatique complet et unifié que tous les employés peuvent adopter et comprendre de façon intuitive. La solution relie directement les processus externes et tiers aux processus internes et aux structures de données, de manière suffisamment cohérente et flexible pour rendre des informations intelligentes rapidement accessibles, visibles et exploitables. 

Grâce à une visibilité accrue, des outils de prévision précis et des données pertinentes générées en temps réel sur les partenaires internes et externes, les entreprises peuvent, par exemple, abaisser considérablement leurs coûts de stock et améliorer leur taux de rotation de plus de 20 %. Nous ne parlons pas ici d’une réduction ponctuelle des dépenses, mais d’une vaste baisse continue des frais généraux dans les domaines du transport, de l’entreposage et de la manutention, avec en outre moins d’obsolescence, de frais d’assurance, de taxes, de dommages et de pertes au niveau des stocks. Même en ces temps où les taux d’intérêt diminuent, les entreprises peuvent réduire leurs coûts de stockage.

Voici les autres avantages à tirer de l’utilisation de SAP S/4HANA pour optimiser votre bilan :

1. Opérations hautes performances

Avec les fonctionnalités des solutions ERP intelligentes, les entreprises peuvent fabriquer et acheter les produits ou services dont elles ont besoin, et les livrer en temps voulu et à l’endroit convenu. Et tout s’opère avec l’agilité nécessaire pour ajuster les plans opérationnels et les pratiques, afin de répondre aux attentes des clients.

Les fonctionnalités prédictives de SAP S/4HANA permettent de revoir rapidement la planification des besoins en composants en tenant compte des données en temps réel. Elles permettent d’éliminer les décisions hypothétiques lors de la gestion des opérations internes, et de minimiser les en-cours de fabrication et les stocks de produits finis de manière optimale et précise.

2. Plus grande collaboration au sein du réseau de fournisseurs

L’amélioration des pratiques d’approvisionnement donne souvent lieu à des négociations plus poussées avec les fournisseurs, ce qui se traduit par des réductions de coûts et une hausse de 30 %d’efficacité dans les achats de matières premières (intrants). L’intégration et la collaboration étroites entre les fournisseurs renforcent la capacité de l’entreprise à planifier les changements, à négocier et à fournir une meilleure assurance qualité, avec plus de répercussions positives sur l’expérience finale du client.

SAP S/4HANA peut aider les entreprises à identifier et à éliminer les goulots d’étranglement dans les processus des chaînes logistiques, ainsi qu’à répondre à l’évolution de la demande. Les responsables opérationnels utilisent ces informations pour ajuster les quantités de produits et les délais de livraison. Leurs fournisseurs qui bénéficient d’une visibilité sur les besoins des consommateurs peuvent alors mieux remplir leurs obligations et répercuter les économies qui en résultent sur le prix de vente.

3. Optimisation de la main-d’œuvre

Avec des possibilités de prévision et d’organisation plus étendues, les cas de ruptures de stock et d’interruptions sont moins fréquents. Ces bons résultats offrent d’autres avantages : la gestion plus avisée des ressources, une meilleure qualité et une formation revalorisée ; moins de temps consacré aux commandes urgentes et reprises précipitées et moins d’heures supplémentaires effectuées par les collaborateurs ; et une contraction des travaux effectués dans des conditions stressantes et ne répondant pas aux attentes.

Avec SAP S/4HANA, les entreprises bénéficient d’une visibilité accrue sur l’évolution des priorités. Elles peuvent automatiser la communication avec les clients et fournisseurs, et fixer des dates de livraison judicieuses, ce qui est essentiel pour fidéliser les clients.

4. Opérations financières maîtrisées

Grâce à une expérience de livraison et de réception plus automatisée ainsi qu’à des contrats clients et fournisseurs bien négociés, les organisations peuvent optimiser leur solidité financière de manière à augmenter leur fonds de roulement.

SAP S/4HANA sert de base pour automatiser la gestion du recouvrement et des liquidités grâce à l’apprentissage automatique et à l’intelligence artificielle (IA). Cela peut conduire, en retour, à une baisse du nombre de jours de retard des créances et à des délais de facturation réduits de plus de 50 %, tout en limitant la fraude et en augmentant les liquidités disponibles. De plus, le processus de vérification automatisée passant par la mise en correspondance de trois facteurs favorise les remises fournisseurs, la planification de la trésorerie et les prévisions financières afin d’optimiser le capital à portée de main.

5. Cohérence et rentabilité du service client et des ventes

À l’aide des données expérientielles et opérationnelles qu’elles exploitent pour comprendre leurs clients, les entreprises peuvent exécuter des modèles de gestion ciblés et différenciés. Par exemple, les modèles de tarification qui répondent de manière créative aux besoins des clients peuvent prendre en charge le stock géré par le fournisseur, la facturation basée sur l’utilisation, les configurations de produits uniques et d’autres stratégies d’intégration à long terme.

En connectant étroitement les besoins des clients aux services de ventes et production, SAP S/4HANA donne aux entreprises les moyens d’offrir un service client plus prévisible et différencié, contribuant au chiffre d’affaires et à la fidélité des clients. Les améliorations apportées dans la gestion de la relation client donnent lieu à des livraisons dans les délais, avec moins de retours et de reprises, quelle que soit l’unicité du produit.

Gagner en force grâce à un bilan optimisé

Dans la dimension économique, nous arrivons à un point où les priorités des directeurs financiers dépassent le cadre de la finance. En plus de gérer les flux de trésorerie, les délais de recouvrement des créances ainsi que la comptabilité clients et fournisseurs en vue d’optimiser les flux de trésorerie, ceux-ci guident les tâches organisationnelles pour améliorer les processus de gestion et l’intelligence à l’échelle de l’entreprise. Plus important encore, après examen de leurs bilans et comptes de résultat, ils élaborent de nouvelles stratégies pour faire face aux incertitudes du marché actuel.

Avec une telle approche de la direction financière, les entreprises sont plus à même de se différencier et de pénétrer le marché de façon organique, tout en réduisant les créances et les stocks, en optimisant le nombre d’articles gérés en stock et la main-d’œuvre, et en accroissant le volume des ventes. Et plus les entreprises font preuve de résilience grâce à SAP S/4HANA, plus leur situation financière s’améliore : les cours des actions affichent une tendance à la hausse, les bénéfices augmentent et le chiffre d’affaires est plus prévisible.


Découvrez comment SAP S/4HANA peut vous aider à obtenir un bilan consolidant la résilience de votre entreprise, pour surmonter les difficultés d’aujourd’hui et se préparer au monde de demain. Consultez l’article « What Companies Should Do to Prepare for a Recession » (Ce que les entreprises doivent faire pour se préparer à la récession) de la Harvard Business Review et découvrez l’ERP intelligent d’aujourd’hui, SAP S/4HANA.

The post L’ERP Intelligent : la clé pour renforcer la résilience financière aujourd’hui et demain appeared first on SAP France News.

Source de l’article sur sap.com

Qu’est-ce que le Big Data ?

Le Big Data est le flot d’informations dans lequel nous nous trouvons tous les jours (des zettaoctets de données provenant de nos ordinateurs, des terminaux mobiles et des capteurs). Ces données sont utilisées par les entreprises pour orienter la prise de décisions, améliorer les processus et les stratégies, et créer des produits, des services et des expériences centrés sur le client.

Le Big Data désigne non seulement de gros volumes de données, mais aussi des données de nature variée et complexe. Il dépasse généralement la capacité des bases de données traditionnelles à capturer, gérer et traiter ce type de données. De plus, le Big Data peut provenir de n’importe où et de tout ce que nous sommes en mesure de surveiller numériquement. Les satellites, les appareils IoT (Internet des Objets), les radars et les tendances des réseaux sociaux ne sont que quelques exemples parmi la multitude de sources de données explorées et analysées pour rendre les entreprises plus résilientes et compétitives.


L’importance de l’analyse du Big Data

La véritable valeur du Big Data se mesure d’après votre capacité à l’analyser et à le comprendre. L’intelligence artificielle (IA), le machine learning et les technologies de base de données modernes permettent de visualiser et d’analyser le Big Data pour fournir des informations exploitables en temps réel. L’analyse du Big Data aide les entreprises à exploiter leurs données en vue de saisir de nouvelles opportunités et de créer de nouveaux modèles de gestion. Comme l’a si bien dit Geoffrey Moore, auteur et analyste de gestion, « sans analyse du Big Data, les entreprises sont aveugles et sourdes, errant sur le Web comme des cerfs sur une autoroute ».

How does Big Data and Analytics work? Simply Explained

Click the button below to load the content from YouTube.

How does Big Data and Analytics work? Simply Explained


L’évolution du Big Data

Aussi inconcevable que cela puisse paraître aujourd’hui, l’Apollo Guidance Computer a emmené l’homme sur la lune avec moins de 80 kilo-octets de mémoire. Depuis, la technologie informatique s’est développée à un rythme exponentiel, de même que la génération de données. La capacité technologique mondiale à stocker des données a doublé tous les trois ans depuis les années 1980. Il y a un peu plus de 50 ans, lors du lancement d’Apollo 11, la quantité de données numériques générées dans le monde aurait pu tenir dans un ordinateur portable. Aujourd’hui, l’IDC estime ce chiffre à 44 zettaoctets (soit 44 000 milliards de gigaoctets) et prévoit qu’il atteindra 163 zettaoctets en 2025.

44 zettaoctets de données numériques aujourd’hui, IDC

163 zettaoctets de données numériques en 2025, IDC

Plus les logiciels et la technologie se développent, moins les systèmes non numériques sont viables. Le traitement des données générées et collectées numériquement requiert des systèmes de data management plus avancés. En outre, la croissance exponentielle des plates-formes de réseaux sociaux, des technologies pour smartphones et des appareils IoT connectés numériquement ont contribué à l’émergence du Big Data.


Types de Big Data : que sont les données structurées et non structurées ?

Les ensembles de données sont généralement catégorisés en trois types, selon leur structure et la complexité de leur indexation.

Illustration des différents types de big data : données structurées, données non-structurées, données semi-structurées.

  1. Données structurées : ce type de données est le plus simple à organiser et à rechercher. Il peut inclure des données financières, des machine logs et des détails démographiques. Une feuille de calcul Microsoft Excel, avec sa mise en forme de colonnes et de lignes prédéfinies, offre un moyen efficace de visualiser les données structurées. Ses composants peuvent facilement être catégorisés, ce qui permet aux concepteurs et administrateurs de bases de données de définir des algorithmes simples pour la recherche et l’analyse. Même lorsque les données structurées sont très volumineuses, elles ne sont pas nécessairement qualifiées de Big Data, car elles sont relativement simples à gérer et ne répondent donc pas aux critères qui définissent le Big Data. Traditionnellement, les bases de données utilisent un langage de programmation appelé SQL (Structured Query Language) pour gérer les données structurées. SQL a été développé par IBM dans les années 1970 pour permettre aux développeurs de créer et gérer des bases de données relationnelles (de type feuille de calcul) qui commençaient à émerger à l’époque.
  2. Données non structurées : cette catégorie de données peut inclure des publications sur les réseaux sociaux, des fichiers audio, des images et des commentaires client ouverts. Ces données ne peuvent pas être facilement capturées dans les bases de données relationnelles standard en lignes et colonnes. Auparavant, les entreprises qui voulaient rechercher, gérer ou analyser de grandes quantités de données non structurées devaient utiliser des processus manuels laborieux. La valeur potentielle liée à l’analyse et à la compréhension de ces données ne faisait aucun doute, mais le coût associé était souvent trop exorbitant pour en valoir la peine. Compte tenu du temps nécessaire, les résultats étaient souvent obsolètes avant même d’être générés. Contrairement aux feuilles de calcul ou aux bases de données relationnelles, les données non structurées sont généralement stockées dans des lacs de données, des entrepôts de données et des bases de données NoSQL.
  3. Données semi-structurées : comme leur nom l’indique, les données semi-structurées intègrent à la fois des données structurées et non structurées. Les e-mails en sont un bon exemple, car ils incluent des données non structurées dans le corps du message, ainsi que d’autres propriétés organisationnelles telles que l’expéditeur, le destinataire, l’objet et la date. Les dispositifs qui utilisent le marquage géographique, les horodatages ou les balises sémantiques peuvent également fournir des données structurées avec un contenu non structuré. Une image de smartphone non identifiée, par exemple, peut indiquer qu’il s’agit d’un selfie et préciser l’heure et l’endroit où il a été pris. Une base de données moderne exécutant une technologie d’IA peut non seulement identifier instantanément différents types de données, mais aussi générer des algorithmes en temps réel pour gérer et analyser efficacement les ensembles de données disparates.

Les sources du Big Data

Les objets générateurs de données se développent à un rythme spectaculaire, depuis les drones jusqu’aux grille-pains. Toutefois, à des fins de catégorisation, les sources de données sont généralement divisées en trois types :

Illustration des différentes sources du big data : données sociales, données machine, données altérables.

Données sociales

Comme leur nom l’indique, les données sociales sont générées par les réseaux sociaux : commentaires, publications, images et, de plus en plus, vidéos. En outre, compte tenu de l’ubiquité croissante des réseaux 4G et 5G, on estime que le nombre de personnes dans le monde qui regardent régulièrement des contenus vidéo sur leur smartphone atteindra 2,72 milliards en 2023. Bien que les tendances concernant les réseaux sociaux et leur utilisation évoluent rapidement et de manière imprévisible, leur progression en tant que générateurs de données numériques est incontestable.

Données machine

Les machines et appareils IoT sont équipés de capteurs et ont la capacité d’envoyer et de recevoir des données numériques. Les capteurs IoT aident les entreprises à collecter et traiter les données machine provenant des appareils, des véhicules et des équipements. Globalement, le nombre d’objets générateurs de données augmente rapidement, des capteurs météorologiques et de trafic jusqu’à la surveillance de la sécurité. Selon l’IDC, il y aura plus de 40 milliards d’appareils IoT en 2025, générant près de la moitié des données numériques mondiales.

Données altérables

Il s’agit des données parmi les plus évolutives au monde. Par exemple, un détaillant international traite plus d’un million de transactions client par heure. Si l’on ajoute à cela les transactions d’achat et bancaires au niveau mondial, on comprend mieux le volume phénoménal de données générées. En outre, les données altérables contiennent de plus en plus de données semi-structurées, y compris des images et des commentaires, ce qui les rend d’autant plus complexes à gérer et à traiter.


Les cinq V du Big Data

Ce n’est pas parce qu’un ensemble de données est volumineux qu’il s’agit nécessairement de Big Data. Pour être qualifiées en tant que telles, les données doivent posséder au minimum les cinq caractéristiques suivantes :

Illustration des 5 V du Big Data : Volume, Vitesse, Variété, Véracité, Valeur.

  1. Volume : même si le volume n’est pas le seul composant qui constitue le Big Data, il s’agit d’une de ses caractéristiques principales. Pour gérer et exploiter pleinement le Big Data, des algorithmes avancés et des analyses pilotées par l’IA sont nécessaires. Mais avant tout cela, il doit exister un moyen fiable et sécurisé de stocker, d’organiser et d’extraire les téraoctets de données détenus par les grandes entreprises.
  2. Vitesse : auparavant, les données générées devaient ensuite être saisies dans un système de base de données traditionnel (souvent manuellement) avant de pouvoir être analysées ou extraites. Aujourd’hui, grâce à la technologie du Big Data, les bases de données sont capables de traiter, d’analyser et de configurer les données lorsqu’elles sont générées, parfois en l’espace de quelques millisecondes. Pour les entreprises, cela signifie que les données en temps réel peuvent être exploitées pour saisir des opportunités financières, répondre aux besoins des clients, prévenir la fraude et exécuter toute autre activité pour laquelle la rapidité est un facteur clé.
  3. Variété : les ensembles de données contenant uniquement des données structurées ne relèvent pas nécessairement du Big Data, quel que soit leur volume. Le Big Data comprend généralement des combinaisons de données structurées, non structurées et semi-structurées. Les solutions de gestion des données et les bases de données traditionnelles n’offrent pas la flexibilité et le périmètre nécessaires pour gérer les ensembles de données complexes et disparates qui constituent le Big Data.
  4. Véracité : bien que les bases de données modernes permettent aux entreprises d’accumuler et d’identifier des volumes considérables de Big Data de différents types, elles ne sont utiles que si elles sont précises, pertinentes et opportunes. S’agissant des bases de données traditionnelles alimentées uniquement avec des données structurées, le manque de précision des données était souvent dû à des erreurs syntaxiques et des fautes de frappe. Les données non structurées présentent toute une série de nouvelles difficultés en matière de véracité. Les préjugés humains, le « bruit social » et les problèmes liés à la provenance des données peuvent avoir un impact sur la qualité des données.
  5. Valeur : les résultats de l’analyse du Big Data sont souvent fascinants et inattendus. Mais pour les entreprises, l’analyse du Big Data doit fournir une visibilité qui les aident à gagner en compétitivité et en résilience, et à mieux servir leurs clients. Les technologies modernes du Big Data offrent la possibilité de collecter et d’extraire des données susceptibles de procurer un avantage mesurable à la fois en termes de résultats et de résilience opérationnelle.

Avantages du Big Data

Les solutions modernes de gestion du Big Data permettent aux entreprises de transformer leurs données brutes en informations pertinentes avec une rapidité et une précision sans précédent.

  • Développement de produits et de services :l’analyse du Big Data permet aux développeurs de produits d’analyser les données non structurées, telles que les témoignages clients et les tendances culturelles, et de réagir rapidement.
  • Maintenance prédictive : dans le cadre d’uneenquête internationale, McKinsey a constaté que l’analyse du Big Data émanant des machines IoT pouvait réduire les coûts de maintenance des équipements jusqu’à 40 %.
  • Expérience client :dans le cadre d’une enquête réalisée en 2020 auprès de responsables d’entreprises du monde entier, Gartner a déterminé que « les entreprises en croissance collectent plus activement des données sur l’expérience client que les entreprises à croissance nulle ». L’analyse du Big Data permet aux entreprises d’améliorer et de personnaliser l’expérience de leurs clients avec leur marque.
  • Gestion de la résilience et des risques :la pandémie de COVID-19 a été une véritable prise de conscience pour de nombreux dirigeants d’entreprise qui se sont rendu compte à quel point leur activité était vulnérable. La visibilité offerte par le Big Data peut aider les entreprises à anticiper les risques et à se préparer aux imprévus.
  • Économies et efficacité accrue : lorsque les entreprises effectuent une analyse avancée du Big Data pour tous les processus de l’organisation, elles peuvent non seulement détecter les inefficacités, mais aussi déployer des solutions rapides et efficaces.
  • Amélioration de la compétitivité : les informations obtenues grâce au Big Data peuvent aider les entreprises à réaliser des économies, à satisfaire leurs clients, à concevoir de meilleurs produits et à innover dans les opérations de gestion.

IA et Big Data

La gestion du Big Data repose sur des systèmes capables de traiter et d’analyser efficacement de gros volumes d’informations disparates et complexes. À cet égard, le Big Data et l’IA ont une relation de réciprocité. Sans l’IA pour l’organiser et l’analyser, le Big Data n’aurait pas grande utilité. Et pour que l’IA puisse générer des analyses suffisamment fiables pour être exploitables, le Big Data doit contenir des ensembles de données suffisamment étendus. Comme l’indique Brandon Purcell, analyste chez Forrester Research, « les données sont au cœur de l’intelligence artificielle. Un système d’IA doit apprendre des données pour remplir sa fonction ».

« Les données sont au cœur de l’intelligence artificielle. Un système d’IA doit apprendre des données pour remplir sa fonction ».

Brandon Purcell, analyste, Forrester Research


Machine learning et Big Data

Les algorithmes de machine learning définissent les données entrantes et identifient des modèles associés. Ces informations permettent de prendre des décisions avisées et d’automatiser les processus. Le machine learning se nourrit du Big Data, car plus les ensembles de données analysés sont fiables, plus le système est susceptible d’apprendre, de faire évoluer et d’adapter ses processus en continu.


Technologies du Big Data

Architecture du Big Data

À l’instar de l’architecture du bâtiment, l’architecture du Big Data fournit un modèle pour la structure de base déterminant la manière dont les entreprises gèrent et analysent leurs données. L’architecture du Big Data mappe les processus requis pour gérer le Big Data à travers quatre « couches » de base, des sources de données au stockage des données, puis à l’analyse du Big Data, et enfin via la couche de consommation dans laquelle les résultats analysés sont présentés en tant que Business Intelligence.

‍Analyse du Big Data

Ce processus permet de visualiser les données de manière pertinente grâce à l’utilisation de la modélisation des données et d’algorithmes spécifiques aux caractéristiques du Big Data. Dans le cadre d’une étude approfondie et d’une enquête de la MIT Sloan School of Management, plus de 2 000 dirigeants d’entreprise ont été interrogés sur leur expérience en matière d’analyse du Big Data. Comme on pouvait s’y attendre, ceux qui s’étaient impliqués dans le développement de stratégies de gestion du Big Data ont obtenu les résultats les plus significatifs.

Big Data et Apache Hadoop

Imaginez une grande boîte contenant 10 pièces de 10 centimes et 100 pièces de 5 centimes. Puis imaginez 10 boîtes plus petites, côte à côte, contenant chacune 10 pièces de 5 centimes et une seule pièce de 10 centimes. Dans quel scénario sera-t-il plus facile de repérer les pièces de 10 centimes ? Hadoop fonctionne sur ce principe. Il s’agit d’une structure en open source permettant de gérer le traitement du Big Data distribué sur un réseau constitué de nombreux ordinateurs connectés. Ainsi, au lieu d’utiliser un gros ordinateur pour stocker et traiter toutes les données, Hadoop regroupe plusieurs ordinateurs sur un réseau pouvant évoluer presque à l’infini et analyse les données en parallèle. Ce processus utilise généralement un modèle de programmation appelé MapReduce, qui coordonne le traitement du Big Data en regroupant les ordinateurs distribués.

Lacs de données, entrepôts de données et NoSQL

Les bases de données traditionnelles de type feuille de calcul SQL servent à stocker les données structurées. Le Big Data non structuré et semi-structuré nécessite des modèles de stockage et de traitement uniques, car il ne peut pas être indexé et catégorisé. Les lacs de données, les entrepôts de données et les bases de données NoSQL sont des référentiels de données capables de gérer les ensembles de données non traditionnels. Un lac de données est un vaste pool de données brutes qui n’ont pas encore été traitées. Un entrepôt de données est un référentiel de données qui ont déjà été traitées à des fins spécifiques. Les bases de données NoSQL fournissent un schéma flexible qui peut être modifié en fonction de la nature des données à traiter. Ces systèmes présentent chacun des avantages et des inconvénients, c’est pourquoi de nombreuses entreprises utilisent plutôt une combinaison de ces référentiels de données pour répondre au mieux à leurs besoins.

Bases de données in-memory

Les bases de données traditionnelles sur disque ont été conçues pour SQL et les bases de données relationnelles. Bien qu’elles soient capables de traiter de gros volumes de données structurées, elles ne sont pas adaptées au stockage et au traitement des données non structurées. Dans le cas des bases de données in-memory, le traitement et l’analyse se font entièrement dans la RAM, pour ne pas avoir à extraire les données d’un système sur disque. Les bases de données in-memory reposent également sur des architectures distribuées. Cela signifie qu’elles peuvent atteindre des vitesses beaucoup plus élevées en utilisant le traitement parallèle, par rapport aux modèles de base de données sur disque à un seul nœud.


Fonctionnement du Big Data

Le Big Data remplit ses fonctions lorsque son analyse fournit des informations pertinentes et exploitables qui améliorent l’activité de manière significative. Pour se préparer à la transition vers le Big Data, les entreprises doivent s’assurer que leurs systèmes et processus sont en mesure de collecter, de stocker et d’analyser le Big Data.

Illustration du fonctionnement du Big Data : collecter le Big Data, stocker le Big Data, Analyser le Big Data

  1. Collecter le Big Data.Une grande partie du Big Data est constituée d’énormes ensembles de données non structurées qui émanent de sources disparates et incohérentes. Les bases de données traditionnelles sur disque et les mécanismes d’intégration des données ne sont pas suffisamment performants pour les gérer. La gestion du Big Data requiert des solutions de base de données in-memory et des solutions logicielles spécifiques de l’acquisition de ce type de données.
  2. Stocker le Big Data.Comme son nom l’indique, le Big Data est volumineux. De nombreuses entreprises utilisent des solutions de stockage sur site pour leurs données existantes et espèrent réaliser des économies en réutilisant ces référentiels pour traiter le Big Data. Toutefois, le Big Data est plus performant lorsqu’il n’est pas soumis à des contraintes de taille et de mémoire. Les entreprises qui n’intègrent pas dès le départ des solutions de stockage Cloud dans leurs modèles de Big Data le regrettent souvent quelques mois plus tard.
  3. Analyser le Big Data. Il est impossible d’exploiter pleinement le potentiel du Big Data sans utiliser les technologies d’IA et de machine learning pour l’analyser. L’un des cinq V du Big Data est la « vitesse ». Pour être utiles et exploitables, les informations du Big Data doivent être générées rapidement. Les processus d’analyse doivent s’auto-optimiser et tirer régulièrement profit de l’expérience, un objectif qui ne peut être atteint qu’avec l’IA et les technologies modernes de bases de données.

Applications du Big Data

La visibilité offerte par le Big Data est bénéfique à la plupart des entreprises ou secteurs d’activité. Cependant, ce sont les grandes entreprises aux missions opérationnelles complexes qui en tirent souvent le meilleur parti.

Finance

Dans le Journal of Big Data, une étude de 2020 souligne que le Big Data « joue un rôle important dans l’évolution du secteur des services financiers, en particulier dans le commerce et les investissements, la réforme fiscale, la détection et les enquêtes en matière de fraude, l’analyse des risques et l’automatisation ». Le Big Data a également contribué à transformer le secteur financier en analysant les données et les commentaires des clients pour obtenir les informations nécessaires à l’amélioration de la satisfaction et de l’expérience client. Les ensembles de données altérables figurent parmi les plus importants et les plus évolutifs au monde. L’adoption croissante de solutions avancées de gestion du Big Data permettra aux banques et aux établissements financiers de protéger ces données et de les utiliser d’une manière qui bénéficie à la fois au client et à l’entreprise.

Hygiène et santé
publique

L’analyse du Big Data permet aux professionnels de santé d’établir des diagnostics plus précis, fondés sur des données avérées. De plus, le Big Data aide les administrateurs d’hôpitaux à identifier les tendances, à gérer les risques et à limiter les dépenses inutiles, afin de consacrer le maximum de fonds aux soins des patients et à la recherche. En cette période de pandémie, les chercheurs du monde entier s’efforcent de traiter et de gérer au mieux la COVID-19, et le Big Data joue un rôle fondamental dans ce processus. Un article de juillet 2020 paru dans The Scientist explique comment des équipes médicales ont pu collaborer et analyser le Big Data afin de lutter contre le coronavirus : « Nous pourrions transformer la science clinique en exploitant les outils et les ressources du Big Data et de la science des données d’une manière que nous pensions impossible ».

Transport et logistique

L’« effet Amazon » est un terme qui définit la manière dont Amazon a fait de la livraison en un jour la nouvelle norme, les clients exigeant désormais la même vitesse d’expédition pour tout ce qu’ils commandent en ligne. Le magazine Entrepreneur souligne qu’en raison de l’effet Amazon, « la course logistique au dernier kilomètre ne fera que s’intensifier ». Les entreprises du secteur s’appuient de plus en plus sur l’analyse du Big Data pour optimiser la planification des itinéraires, la consolidation des charges et les mesures d’efficacité énergétique.

Éducation

Depuis l’apparition de la pandémie, les établissements d’enseignement du monde entier ont dû réinventer leurs programmes d’études et leurs méthodes d’enseignement afin de faciliter l’apprentissage à distance. L’un des principaux défis a été de trouver des moyens fiables d’analyser et d’évaluer la performance des étudiants et l’efficacité globale des méthodes d’enseignement en ligne. Un article paru en 2020 au sujet de l’impact du Big Data sur la formation et l’apprentissage en ligne indique, au sujet des enseignants, que « le Big Data les aide à gagner en confiance pour personnaliser l’enseignement, développer l’apprentissage mixte, transformer les systèmes d’évaluation et promouvoir l’apprentissage continu ».

Énergie et services publics

Selon le U.S. Bureau of Labor Statistics, le service public consacre plus de 1,4 milliard de dollars aux relevés de compteurs et s’appuie généralement sur des compteurs analogiques et des lectures manuelles peu fréquentes. Les relevés de compteurs intelligents fournissent des données numériques plusieurs fois par jour et, grâce à l’analyse du Big Data, ces informations permettent d’accroître l’efficacité de la consommation énergétique, ainsi que la précision des prix et des prévisions. En outre, lorsque les agents n’ont plus à se charger des relevés de compteurs, la saisie et l’analyse des données peuvent permettre de les réaffecter plus rapidement là où les réparations et les mises à niveau sont les plus urgentes.

Publié en anglais sur insights.sap.com

The post Qu’est-ce que le Big Data ? appeared first on SAP France News.

Source de l’article sur sap.com

Headless eCommerce – Common architectural elements

article imageIn our previous article from this series we introduced a use case around headless e-commerce for retail stores.

The process was laid out how we’ve approached the use case and how portfolio solutions are the base for researching a generic architectural blueprint.

Source de l’article sur DZONE

Fonctionnalités clés d’un ERP moderne : quelques exemples remarquables

Les nouvelles technologies peuvent changer la donne dans le milieu des logiciels d’entreprise. Pourtant, c’est à l’amélioration de l’expérience utilisateur que l’on attribue une véritable valeur. De la même façon, quand on parle de conversion au numérique, il ne s’agit pas de continuer à faire les mêmes choses avec de nouvelles technologies, mais de transformer les méthodes de gestion des entreprises. Les technologies innovantes fournissent de nouvelles fonctionnalités rimant avec nouvelles opportunités pour les entreprises et les particuliers.

SAP HANA est l’une de ces technologies qui changent la donne pour les logiciels d’entreprise. Bien plus qu’une simple base de données, il s’agit de la base sur laquelle repose SAP S/4HANA. Grâce à SAP HANA, les données sont utilisées autrement, c’est-à-dire d’une manière plus intelligente et prédictive.

SAP S/4HANA s’accompagne de cas d’apprentissage automatique intégrés (par exemple, automatisation intelligente pour la conformité fiscale, réapprovisionnement piloté par la demande, prévision des livraisons fournisseurs, affectation intelligente du personnel et des ressources, et prévision des performances de vente), grâce au socle d’Intelligence Artificielle (IA) qui sous-tend SAP HANA.

Tels sont les ingrédients qui forment une nouvelle expérience utilisateur caractérisé par le passage « de l’information à l’action », car les utilisateurs peuvent obtenir des informations pertinentes qui facilitent la prise de décision. Cette fonctionnalité est l’une des clés d’un progiciel de gestion intégré (ERP) moderne, optimisé par SAP HANA. Cette visibilité sur les informations permet d’obtenir une vue d’ensemble complète et en temps réel sur une entreprise, notamment sur les informations concernant les liquidités, les statistiques de commandes, les actifs et la satisfaction des clients. Même si les systèmes ERP hérités offraient également cette possibilité dans une certaine mesure, les informations étaient issues d’instantanés de données statiques et obsolètes, basés sur des agrégats précalculés dans les bases de données. Ces limites technologiques étaient source d’incertitudes et nous empêchaient de prendre des décisions parfaitement éclairées, notamment en raison de notre incapacité à réagir en temps réel à des événements imprévus.

Le modèle de données unifié dans SAP S/4HANA permet aux entreprises de s’appuyer sur une source d’informations unique, une autre fonctionnalité clé d’un ERP moderne. Le modèle de données unifié calcule des indicateurs de performance clés (KPI) à la volée, en s’appuyant sur des postes individuels réels au lieu d’agrégats sans horodatage, ce qui permet de refléter la réalité à l’instant t. Les clients peuvent voir leur stock en temps réel. Cependant, le modèle de données lui-même n’est que la base d’un nouveau niveau de visibilité. Afin que ces informations soient exploitées concrètement, des fonctionnalités d’analyse intégrées préviennent les utilisateurs des événements de gestion dès qu’ils se produisent. Par ailleurs, elles guident les utilisateurs pour les aider à éviter les problèmes et les exceptions.

Il en va de même pour la finance, où le journal universel rassemble des tables et des livres auxiliaires qui auparavant étaient séparés. Cette fonctionnalité permet une clôture en douceur et une consolidation à la demande qui donne aux dirigeants une vue complète sur toutes les données pertinentes, ce qui les aide à prendre des décisions avisées et rend l’entreprise plus agile. Elle enregistre également toutes les données financières au même endroit et permet ainsi un traitement parallèle cohérent entre tous les livres auxiliaires et les flux de valeurs. De plus, le journal universel s’intègre parfaitement à SAP HANA de par sa structure simple, sans agrégat ni hiérarchie. Grâce à la technologie in-memory, il est facile et rapide d’établir des rapports à partir des données du journal universel. Les ledgers représentent un volet essentiel dans le journal universel. En extrayant les données d’une table à une autre, ils permettent un reporting prompt et efficace des données financières en vertu des différentes normes comptables et attributs.

En ce qui concerne l’agilité, selon une étude réalisée par l’Economist Intelligence Unit Ltd. auprès de 800 directeurs et dirigeants financiers, la gestion des changements inattendus par rapport aux prévisions financières et l’adaptation des processus financiers à la rapide évolution des modèles d’affaires font partie des principaux défis que les dirigeants financiers doivent relever dans l’exécution de leurs activités quotidiennes. En outre, 90 % des dirigeants financiers pensent que le service financier doit simplifier la planification d’entreprise collaborative pour veiller à ce que les plans opérationnels soient alignés sur les plans financiers et stratégiques.

La possibilité d’exécuter la planification, l’analyse du compte de résultat et le reporting du groupe en se basant sur le même ensemble de données bouleversera la finance à jamais. Cela étant, nous nous dirigeons vers une vision plus tournée vers l’avenir. Pour parvenir à cette fin, il convient de combiner intelligemment les données en temps réel (de même que les données de planification, de prévision et de simulation), afin de détecter les risques et les opportunités pour y réagir sans tarder. Cela rend les processus encore plus efficaces et intelligents, tout en offrant de nouvelles opportunités pour la finance à l’avenir. Lors de périodes de pandémie comme celle que nous connaissons aujourd’hui, cela a donné à nombre de nos clients la force de traverser la tourmente et l’agilité nécessaire pour évoluer dans des environnements en constante évolution.

Mais la visibilité seule ne suffit pas pour combler le fossé entre les systèmes analytiques et transactionnels, fossé qui s’observe chez les systèmes ECC hérités. L’automatisation, l’aide à la décision et l’IA ne peuvent pas être pleinement exploités en raison de cette fracture technologique. C’est là que la partie « action » entre en jeu : les utilisateurs professionnels reçoivent alors les conseils dont ils ont besoin pour prendre des décisions et réaliser des opérations dans les workflows et les processus intelligents hautement automatisés.

Il existe de nombreux exemples d’utilisations innovantes de SAP S/4HANA sur SAP HANA dans divers domaines : MRP (planification des besoins en composants) Live, MRP piloté par la demande, gestion des stocks, finance, disponibilité à la vente, traitement des reliquats et nouvelle configuration des produits à variantes.

Prenons, à titre d’illustration, MRP Live, l’Application MRP et les fonctions prédictives de MRP. Avec MRP Live, les clients peuvent planifier et évaluer de très gros volumes de données en temps réel. Par rapport aux anciens cycles MRP et évaluations, MRP Live et l’Application MRP peuvent être exécutés plus fréquemment ; aussi, le gestionnaire peut améliorer de manière significative les KPI tels que les niveaux de stock et les accords sur le niveau de service proposés aux clients. En outre, avec les fonctions prédictives de MRP, il est possible d’exécuter des simulations de l’usine. Cette approche MRP nouvelle génération dans SAP S/4HANA convertit automatiquement les exceptions en propositions de solution.

Nos clients qui utilisent MRP Live sont des entreprises de toutes tailles, qui opèrent dans toutes les régions et tous les secteurs (notamment, machines et composants industriels ou encore biens de consommation). Thermo Cables, une entreprise de taille moyenne basée en Inde, utilise SAP S/4HANA et ce faisant, elle a fait croître son chiffre d’affaires grâce à une visibilité accrue, couplée à des processus de gestion clés (cycles MRP exécutés sur des données en temps réel, par exemple) et un accès instantané aux rapports couvrant toutes les fonctions de l’entreprise. Nous pouvons également citer ANTA, un fabricant de vêtements de sport, qui a pu améliorer le mécanisme de calcul MRP et réduire de 80 % le temps nécessaire pour modifier les nomenclatures grâce à la modification des données par lots. Avec SAP S/4HANA, ANTA a également réussi à rehausser l’efficacité en matière de consommation des stocks de 90 % grâce aux mises à jour automatiques reçues pour un grand nombre de commandes.

Le MRP piloté par la demande, une composante de SAP S/4HANA, vérifie régulièrement la situation de la demande et du réapprovisionnement, puis propose des niveaux optimaux de marge et de stock dont la mise en œuvre est à portée de clic. La demande et le réapprovisionnement peuvent désormais être ajustés plus souvent et plus régulièrement, ce qui se traduit par un pilotage plus efficace des processus adjacents. Auparavant, les entreprises menaient une fois par an un projet d’optimisation des stocks dans une feuille Excel. À présent, cette tâche est remplacée par un processus de routine automatisé qui assure la meilleure capacité de livraison, tout en optimisant les actifs et les liquidités de l’entreprise en question.

La pandémie de COVID-19 nous a montré à quel point les chaînes logistiques mondiales sont fragiles et peuvent être perturbées rapidement. Mais les logiciels d’entreprise ont aidé les organisations à rester agiles pour réduire les incertitudes et l’impact financier sur leurs activités.

Comme je l’ai décrit au début, quand on parle de conversion au numérique, il ne s’agit pas d’exécuter les mêmes activités en exploitant les nouvelles technologies, mais de transformer les méthodes de gestion des entreprises. C’est ce à quoi les entreprises doivent se préparer si elles veulent surmonter les défis d’aujourd’hui.


Thomas Saueressig est membre du Conseil de direction Ingénierie de produits de SAP SE
Cet article est initialement paru sur LinkedIn.

The post Fonctionnalités clés d’un ERP moderne : quelques exemples remarquables appeared first on SAP France News.

Source de l’article sur sap.com