26 Exciting New Tools For Designers, May 2021

From dev tools to productivity to a little bit of fun with sudoku, this month’s collection of new tools is packed with something for everyone.

Here’s what new for designers this month.

May’s Top Picks

Am I FLoCed?

Am I FLoCed? Is a tool to see if you are part of a Google Chrome origin trial. It tests a new tracking feature called Federated Learning of Cohorts (FLoC). According to Google, the trial currently affects 0.5% of users in selected regions, including Australia, Brazil, Canada, India, Indonesia, Japan, Mexico, New Zealand, the Philippines, and the United States. The page will try to detect whether you’ve been made a guinea pig in Google’s ad-tech experiment.

According to the designers of Am I FloCed: “FLoC runs in your browser. It uses your browsing history from the past week to assign you to a group with other ‘similar’ people around the world. Each group receives a label, called a FLoC ID, which is supposed to capture meaningful information about your habits and interests. FLoC then displays this label to everyone you interact with on the web. This makes it easier to identify you with browser fingerprinting, and it gives trackers a head start on profiling you.”


Uncut is a Libre typeface catalog that just got started in April. It features contemporary typefaces and styles and is set to be updated regularly. Sort by sans serif, serif, monospace, or display typefaces. Plus, you can submit a typeface for inclusion.


Dashblock allows you to build automations without coding. Use it to create visual automations, or turn blocks into use-cases. (It is a premium tool, but comes with a 14-day free trial to test it out.)


Instant is a fast and secure one-click checkout tool that works with WooCommerce. Users fill out a short form the first time they shop and then join the network to enable instant, frictionless, 1-click checkouts without passwords. It makes shopping easier and cuts abandoned carts.

5 Image Tools


Triangula uses a modified genetic algorithm to triangulate images. It works best with images smaller than 3000px and with fewer than 3000 points, typically producing an optimal result within a couple of minutes. The result is a nifty-looking image.

Content-Aware Image Resizing in Javascript

Content-Aware Image Resizing in Javascript solves that problem with images where you have a photo but it just doesn’t quite fit. A crop doesn’t work because you lose important information. The carver slices and cuts photos to give you the image elements you want in the size you want them. It’s probably a good idea to read through the tutorial before jumping into the open-source code on GitHub.

Globs Design

Globs Design uses toggles and drag and drop to help you create funky shapes and fills that you can save in SVG format for projects.

Root Illustrations

Root Illustrations is a stylish set of people-based illustrations that you can customize to create scenes for your projects. Construct a scene and then snag your set of vector graphics that also work with Sketch and Figma. The set includes 24 characters, more than 100 details, and the ability to change colors and styles.

Make Your Photo 16×9

Make Your Photo 16×9 is as simple as it sounds. It is a cropping tool that allows you to upload any shape of photo – even vertical – and pick options to fill the space to make it fit the standard 16×9 aspect ratio.

6 Dev Tools


Devbook is a search engine for developers that helps them to find the resources they need and answer their questions faster. Fast, accessible right from a code editor, and fully controllable with just a keyboard.


Madosel is a fast, advanced responsive HTML front-end framework that’s in an alpha version. The open-source tool is made to create websites and apps that look great on any device. Plus, it is semantic, readable, flexible, and customizable.

Say Hello to CSS Container Queries

Say Hello to CSS Container Queries helps solve a problem with media queries and smart stacking of elements. CSS Container Queries allow you to make a fluid component that adjusts based on the parent element and everything is independent of viewport width. This post takes you through everything you need to do to implement this yourself.

Frontend Toolkit

Frontend Toolkit is a customizable dashboard that you can use to keep up with recurring tasks. It’s one of those little tools that can speed up workflows.


Flatfile is a production-ready importer for SaaS applications. It allows you to auto-format customer spreadsheets without manual cleaning of data and you can do it all without a CSV parser. The tool also includes an elegant UI component to guide users through the process.


Plasmic is a visual website builder that works with your codebase. It’s designed to speed up development with developers focusing on code (not pixel pushing) and allows non-developers to publish pages and content. The premium tool works with any hosting, CMS, or framework and you can adapt it by the component, section, or page.

2 Productivity Tools


Calendso is an open-source calendar scheduling tool. It’s flexible with the ability to host it yourself or with the makers of the calendar. It is API-driven and allows you to control events and information. The interface is simple and sleek and can integrate into your website.


Slidev is a set of presentation slides for developers. What’s different about this presentation deck is that you can write slides in a single markdown file with themes, code blocks, and interactive components.

4 Icons and UI Kits


Iconic is a set of pixel-perfect icons that gets updated each week. The collection of 24×24 px elements in SVG format contains 160 icons and counting. The simple style is easy to implement and you can search for just what you need by category.

5 Dashboard Templates for Figma

5 Dashboard Templates for Figma is a set of free ready-made screens with light and dark modes for each that you can use with components such as calendars, charts, tables, and more. The free elements are a preview of a larger premium Figma set if you like how they look and work.

Free Mobile Chat UI Kit

Free Mobile Chat UI Kit is a tool of components for Sketch, Figma, and Adobe XD that includes more than 50 messaging screens with light and dark modes.

Stratum UI Design Kit

Stratum UI Design Kit is a collection of more than 9,000 consistent elements for Figma. It’s packed with elements and tools that make this premium UI kit a tool that gets projects moving quickly.

4 Type Tools and Fresh Fonts

Fluid Typography

Fluid Typography is a nifty tool that allows you to test headings in any size at different viewports to ensure it looks great everywhere. Then you can copy the CSS and use it in your projects.


Eighty-Eight is a funky block-style typeface for display use.


Harmonique is a robust typeface family with lovely serifs and alternates. It’s a type family of two styles that work in harmony together to add distinction and personality to your own typographic compositions. Harmonique’s low contrast forms have the appeal of a humanist sans serif typeface.


Sketchup is a charming display typeface that has a nice pen style. The free version has a limited character set.

Just for Fun

Generating and Solving Sudokus in CSS

Generating and Solving Sudokus in CSS by Lee Meyer for CSS-Tricks is a fun deep dive into using CSS for something you might not expect. It’s a complicated – but fun – look at some of the things CSS can do with plenty of code snippets. The final result is a solvable puzzle with 16 squares.


The post 26 Exciting New Tools For Designers, May 2021 first appeared on Webdesigner Depot.

Source de l’article sur Webdesignerdepot

Popular Design News of the Week: May 3 2021 – May 9, 2021

Every day design fans submit incredible industry stories to our sister-site, Webdesigner News. Our colleagues sift through it, selecting the very best stories from the design, UX, tech, and development worlds and posting them live on the site.

The best way to keep up with the most important stories for web professionals is to subscribe to Webdesigner News or check out the site regularly. However, in case you missed a day this week, here’s a handy compilation of the top curated stories from the last seven days. Enjoy!

White House Launches AI Website

Become A Better Frontend Developer

Hello Weather

Sprint UI Design System Generator

How Pixar Uses Hyper-Colors to Hack Your Brain

Bootstrap 5

Microsoft’s New Font: Your Work Will Soon Take On A New Character


Everything You Need to Know About UX Writing In Web Design

3 Essential Design Trends, May 2021


The post Popular Design News of the Week: May 3 2021 – May 9, 2021 first appeared on Webdesigner Depot.

Source de l’article sur Webdesignerdepot

Qu’est-ce que la modélisation des données ?

La modélisation des données correspond au processus de création de diagrammes de flux de données. Lors de la création d’une structure de base de données, qu’elle soit nouvelle ou non, le concepteur commence par élaborer un diagramme illustrant la façon dont les données entreront et sortiront de la base de données. Ce diagramme est utilisé pour définir les caractéristiques des formats et structures de données, ainsi que des fonctions de gestion de base de données, afin de répondre efficacement aux exigences des flux de données. Une fois la base de données créée et déployée, le modèle de données servira de documentation expliquant les motifs de création de la base de données ainsi que la manière dont les flux de données ont été conçus.

Le modèle de données résultant de ce processus établit une structure de relations entre les éléments de données dans une base de données et sert de guide d’utilisation des données. Les modèles de données sont un élément fondamental du développement et de l’analyse de logiciels. Ils fournissent une méthode standardisée pour définir et mettre en forme les contenus de base de données de manière cohérente dans les systèmes, ce qui permet à diverses applications de partager les mêmes données.

Pourquoi la modélisation des données est-elle importante ?

Un modèle de données complet et optimisé permet de créer une base de données logique et simplifiée qui élimine la redondance, réduit les besoins en stockage et permet une récupération efficace. Elle dote également tous les systèmes de ce que l’on appelle une « source unique de la vérité », ce qui est essentiel pour assurer des opérations efficaces et garantir une conformité vérifiable aux réglementations et exigences réglementaires. La modélisation des données est une étape clé dans deux fonctions vitales d’une entreprise numérique.

Projets de développement logiciel (nouveaux ou personnalisations) mis en place par le service informatique

Avant de concevoir et de créer un projet logiciel, il doit exister une vision documentée de ce à quoi ressemblera le produit final et de son comportement. Une grande partie de cette vision concerne l’ensemble de règles de gestion qui régissent les fonctionnalités souhaitées. L’autre partie est la description des données : les flux de données (ou le modèle de données) et la conception de la base de données qui les prendra en charge.

La modélisation des données est une trace de cette vision et fournit une feuille de route pour les concepteurs de logiciels. Grâce à la définition et à la documentation complètes des flux de données et de la base de données, ainsi qu’au développement des systèmes conformément à ces spécifications, les systèmes devraient être en mesure de fournir les fonctionnalités attendues requises pour garantir l’exactitude des données (en supposant que les procédures ont été correctement suivies).

Analyses et visualisation (ou Business Intelligence) : un outil de prise de décision clé pour les utilisateurs

Avec l’augmentation des volumes de données et le nombre croissant d’utilisateurs, les entreprises ont besoin de transformer les données brutes en informations exploitables pour prendre des décisions. Sans surprise, la demande en analyse des données a augmenté de façon spectaculaire. La visualisation des données rend les données encore plus accessibles aux utilisateurs en les présentant sous forme graphique.

Les modèles de données actuels transforment les données brutes en informations utiles qui peuvent être transposées dans des visualisations dynamiques. La modélisation des données prépare les données pour l’analyse : nettoyage des données, définition des mesures et des dimensions, amélioration des données par l’établissement de hiérarchies, la définition d’unités et de devises et l’ajout de formules.

Quels sont les types de modélisation des données ?

Les trois types de modèles de données clés sont le modèle relationnel, le modèle dimensionnel et le modèle entité-association. Il en existe d’autres qui ne sont pas communément utilisés, notamment les types hiérarchique, réseau, orienté objet et à plusieurs valeurs. Le type de modèle définit la structure logique, à savoir comment les données sont stockées, organisées et extraites.

  1. Type relationnel : bien qu’« ancien » dans son approche, le modèle de base de données le plus couramment utilisé aujourd’hui est le relationnel, qui stocke les données dans des enregistrements au format fixe et organise les données dans des tables avec des lignes et des colonnes. Le type de modèle de données le plus basique comporte deux éléments : des mesures et des dimensions. Les mesures sont des valeurs numériques, telles que les quantités et le chiffre d’affaires, utilisées dans les calculs mathématiques comme la somme ou la moyenne. Les dimensions peuvent correspondre à des valeurs numériques ou textuelles. Elles ne sont pas utilisées dans les calculs et incluent des descriptions ou des emplacements. Les données brutes sont définies comme une mesure ou une dimension. Autres termes utilisés dans la conception de base de données relationnelle : « relations » (la table comportant des lignes et des colonnes), « attributs » (colonnes), « nuplets » (lignes) et « domaine » (ensemble de valeurs autorisées dans une colonne). Bien qu’il existe d’autres termes et exigences structurelles qui définissent une base de données relationnelle, le facteur essentiel concerne les relations définies dans cette structure. Les éléments de données communs (ou clés) relient les tables et les ensembles de données. Les tables peuvent également être explicitement liées, comme une relation parent/enfant, y compris les relations dites un-à-un (one-to-one), un-à-plusieurs (one-to-many) ou plusieurs-à-plusieurs (many-to-many).
  2. Type dimensionnel : moins rigide et structurée, l’approche dimensionnelle privilégie une structure de données contextuelle davantage liée à l’utilisation professionnelle ou au contexte. Cette structure de base de données est optimisée pour les requêtes en ligne et les outils d’entreposage de données. Les éléments de données critiques, comme une quantité de transaction par exemple, sont appelés « faits » et sont accompagnés d’informations de référence appelées « dimensions », telles que l’ID de produit, le prix unitaire ou la date de la transaction. Une table de faits est une table primaire dans un modèle dimensionnel. La récupération peut être rapide et efficace (avec des données pour un type d’activité spécifique stockées ensemble), mais l’absence de relations peut compliquer l’extraction analytique et l’utilisation des données. Étant donné que la structure des données est liée à la fonction qui produit et utilise les données, la combinaison de données produites par divers systèmes (dans un entrepôt de données, par exemple) peut poser des problèmes.
  3. Modèle entité-association (modèle E-R) : un modèle E-R représente une structure de données métier sous forme graphique contenant d’une part des boîtes de différentes formes pour représenter des activités, des fonctions ou des « entités », et d’autre part des lignes qui représentent des dépendances, des relations ou des « associations ». Le modèle E-R est ensuite utilisé pour créer une base de données relationnelle dans laquelle chaque ligne représente une entité et comporte des zones qui contiennent des attributs. Comme dans toutes les bases de données relationnelles, les éléments de données « clés » sont utilisés pour relier les tables entre elles.

Quels sont les trois niveaux d’abstraction des données ?

Il existe de nombreux types de modèles de données, avec différents types de mises en forme possibles. La communauté du traitement des données identifie trois types de modélisation permettant de représenter les niveaux de pensée au fur et à mesure que les modèles sont développés.

Modèle de données conceptuel

Ce modèle constitue une « vue d’ensemble » et représente la structure globale et le contenu, mais pas le détail du plan de données. Il s’agit du point de départ standard de la modélisation des données qui permet d’identifier les différents ensembles de données et flux de données dans l’organisation. Le modèle conceptuel dessine les grandes lignes pour le développement des modèles logiques et physiques, et constitue une part importante de la documentation relative à l’architecture des données.

Modèle de données logique

Le deuxième niveau de détail est le modèle de données logique. Il est étroitement lié à la définition générale du « modèle de données » en ce sens qu’il décrit le flux de données et le contenu de la base de données. Le modèle logique ajoute des détails à la structure globale du modèle conceptuel, mais n’inclut pas de spécifications pour la base de données en elle-même, car le modèle peut être appliqué à diverses technologies et divers produits de base de données. (Notez qu’il peut ne pas exister de modèle conceptuel si le projet est lié à une application unique ou à un autre système limité).

Modèle de données physique

Le modèle de base de données physique décrit comment le modèle logique sera réalisé. Il doit contenir suffisamment de détails pour permettre aux techniciens de créer la structure de base de données dans les matériels et les logiciels pour prendre en charge les applications qui l’utiliseront. Il va sans dire que le modèle physique est spécifique à un système logiciel de base de données en particulier. Il peut exister plusieurs modèles physiques dérivés d’un seul et même modèle logique si plusieurs systèmes de base de données seront utilisés.

Processus et techniques de modélisation des données

La modélisation des données est par essence un processus descendant qui débute par l’élaboration du modèle conceptuel pour établir la vision globale, puis se poursuit avec le modèle logique pour s’achever par la conception détaillée contenue dans le modèle physique.

L’élaboration du modèle conceptuel consiste principalement à mettre des idées sous la forme d’un graphique qui ressemble au diagramme des flux de données conçu par un développeur.

Les outils de modélisation des données modernes peuvent vous aider à définir et à créer vos modèles de données logiques et physiques et vos bases de données. Voici quelques techniques et étapes classiques de modélisation des données :

  • Déterminez les entités et créez un diagramme entité-association. Les entités sont considérées comme des « éléments de données qui intéressent votre entreprise ». Par exemple, « client » serait une entité. « Vente » en serait une autre. Dans un diagramme entité-association, vous documentez la manière dont ces différentes entités sont liées les unes aux autres dans votre entreprise, et les connexions qui existent entre elles.
  • Définissez vos faits, mesures et dimensions. Un fait est la partie de vos données qui indique une occurrence ou une transaction spécifique, comme la vente d’un produit. Vos mesures sont quantitatives, comme la quantité, le chiffre d’affaires, les coûts, etc. Vos dimensions sont des mesures qualitatives, telles que les descriptions, les lieux et les dates.
  • Créez un lien de vue de données à l’aide d’un outil graphique ou via des requêtes SQL. Si vous ne maîtrisez pas SQL, l’option la plus intuitive sera l’outil graphique : il vous permet de faire glisser des éléments dans votre modèle et de créer visuellement vos connexions. Lors de la création d’une vue, vous avez la possibilité de combiner des tables et d’autres vues dans une sortie unique. Lorsque vous sélectionnez une source dans la vue graphique et que vous la faites glisser dans une source déjà associée à la sortie, vous pouvez soit la joindre, soit créer une union de ces tables.

Les solutions analytiques modernes peuvent également vous aider à sélectionner, filtrer et connecter des sources de données à l’aide d’un affichage graphique de type glisser-déposer. Des outils avancés sont disponibles pour les experts en données qui travaillent généralement au sein des équipes informatiques. Toutefois, les utilisateurs peuvent également créer leurs propres présentations en créant visuellement un modèle de données et en organisant des tables, des graphiques, des cartes et d’autres objets pour élaborer une présentation basée sur des analyses de données.

Exemples de modélisation des données

Pour toute application, qu’elle soit professionnelle, de divertissement, personnelle ou autre, la modélisation des données est une étape préalable nécessaire à la conception du système et à la définition de l’infrastructure nécessaire à sa mise en œuvre. Cela concerne tout type de système transactionnel, de suite d’applications de traitement des données, ou tout autre système qui collecte, crée ou utilise des données.

La modélisation des données est essentielle pour l’entreposage de données car un entrepôt de données est un référentiel de données provenant de plusieurs sources, qui contiennent probablement des données similaires ou liées, mais disponibles sous des formats différents. Il est nécessaire de mapper en premier lieu les formats et la structure de l’entrepôt afin de déterminer comment manipuler chaque ensemble de données entrant pour répondre aux besoins de la conception de l’entrepôt, afin que les données soient utiles pour l’analyse et l’exploration de données. Le modèle de données est alors un catalyseur important pour les outils analytiques, les systèmes d’information pour dirigeants (tableaux de bord), l’exploration de données et l’intégration à tous les systèmes et applications de données.

Dans les premières étapes de conception de n’importe quel système, la modélisation des données est une condition préalable essentielle dont dépendent toutes les autres étapes pour établir la base sur laquelle reposent tous les programmes, fonctions et outils. Le modèle de données est comparable à un langage commun permettant aux systèmes de communiquer selon leur compréhension et leur acceptation des données, comme décrit dans le modèle. Dans le monde actuel de Big Datad’apprentissage automatiqued’intelligence artificiellede connectivité Cloudd’IdO et de systèmes distribués, dont l’informatique en périphérie, la modélisation des données s’avère plus importante que jamais.

Évolution de la modélisation des données

De façon très concrète, la modélisation des données est apparue en même temps que le traitement des données, le stockage de données et la programmation informatique, bien que le terme lui-même n’ait probablement été utilisé qu’au moment où les systèmes de gestion de base de données ont commencé à évoluer dans les années 1960. Il n’y a rien de nouveau ou d’innovant dans le concept de planification et d’architecture d’une nouvelle structure. La modélisation des données elle-même est devenue plus structurée et formalisée au fur et à mesure que davantage de données, de bases de données et de variétés de données sont apparues.

Aujourd’hui, la modélisation des données est plus essentielle que jamais, étant donné que les techniciens se retrouvent face à de nouvelles sources de données (capteurs IdO, appareils de localisation, flux de clics, réseaux sociaux) et à une montée des données non structurées (texte, audio, vidéo, sorties de capteurs brutes), à des volumes et à une vitesse qui dépassent les capacités des systèmes traditionnels. Il existe désormais une demande constante de nouveaux systèmes, de nouvelles structures et techniques innovantes de bases de données, et de nouveaux modèles de données pour rassembler ces nouveaux efforts de développement.

Quelle est la prochaine étape de la modélisation des données ?

La connectivité des informations et les grandes quantités de données provenant de nombreuses sources disparates (capteurs, voix, vidéo, emails, etc.) étendent le champ d’application des projets de modélisation pour les professionnels de l’informatique. Internet est, bien sûr, l’un des moteurs de cette évolution. Le Cloud est en grand partie la solution car il s’agit de la seule infrastructure informatique suffisamment grande, évolutive et agile pour répondre aux exigences actuelles et futures dans un monde hyperconnecté.

Les options de conception de base de données évoluent également. Il y a dix ans, la structure dominante de la base de données était relationnelle, orientée lignes et utilisait la technologie traditionnelle de l’espace disque. Les données du grand livre ou de la gestion des stocks d’un système ERP standard étaient stockées dans des dizaines de tables différentes qui doivent être mises à jour et modélisées. Aujourd’hui, les solutions ERP modernes stockent des données actives dans la mémoire à l’aide d’une conception en colonnes, ce qui réduit considérablement le nombre de tables et accroît la vitesse et l’efficacité.

Pour les professionnels du secteur, les nouveaux outils en libre-service disponibles aujourd’hui continueront à s’améliorer. De nouveaux outils seront également introduits pour rendre la modélisation et la visualisation des données encore plus simples et plus collaboratives.


Un modèle de données bien pensé et complet est la clé du développement d’une base de données véritablement fonctionnelle, utile, sécurisée et exacte. Commencez par le modèle conceptuel pour présenter tous les composants et fonctions du modèle de données. Affinez ensuite ces plans dans un modèle de données logique qui décrit les flux de données et définit clairement les données nécessaires et la manière dont elles seront acquises, traitées, stockées et distribuées. Le modèle de données logique donne lieu au modèle de données physique spécifique à un produit de base de données et constitue le document de conception détaillé qui guide la création de la base de données et du logiciel d’application.

Une bonne modélisation des données et une bonne conception de base de données sont essentielles au développement de bases de données et de systèmes d’application fonctionnels, fiables et sécurisés, qui fonctionnent bien avec les entrepôts de données et les outils analytiques, et facilitent l’échange de données entre les partenaires et entre les suites d’application. Des modèles de données bien pensés aident à garantir l’intégrité des données, ce qui rend les données de votre entreprise encore plus précieuses et fiables.

Découvrez les outils modernes de modélisation des données de SAP Data Warehouse Cloud

En savoir plus


The post Qu’est-ce que la modélisation des données ? appeared first on SAP France News.

Source de l’article sur

How To Power Through Designer Apathy

Sometimes you just don’t give a damn anymore. Possibly the only thing worse than designer’s block is designer’s apathy: that sinking feeling you get when you realize that you just don’t care about this particular piece of work anymore is disheartening.

The dread of going back to it is paralyzing.

There are many reasons you can stop caring about your work. Maybe you’ve just done the same thing too many times in a row. Maybe your client is insisting on asking for things you know won’t work for them. Maybe something much more important just happened in your life, and you’ve got bigger things to worry about. You could be discouraged by the apparent ‘sameness’ of bandwagon-hopping designs.

I’ve been not caring about my work ever since I was first asked to pick up my toys

Whatever the reason, we all experience times when we know exactly what we have to do… we just don’t care.

I’m something of an expert on this phenomenon. I’ve been not caring about my work ever since I was first asked to pick up my toys. Worse, I have the attention span of a goldfish, even now.

Web design is different. When I discovered it, it was new, exciting, and I could do it on the computer. I loved it, and I still do. Writing code that makes design happen in a browser window will never get old for me.

But even so, sometimes, a particular project will make me want to throw up my hands in exasperation and play video games ‘til Judgement Day. I’d welcome Skynet with tacos and RPGs.

So what do we do about it? First, answer this question: who is the project for?

For A Client

If the project is for a client, it’s just gotta get done. There’s no way around that. You made a commitment. You’re going to follow through and give it your best possible effort because you’re a professional. Anything less would be wrong.

However, that doesn’t mean you have to just power through with only coffee and misery for company. There are things you can do to make the work easier on yourself. The less miserable you are while you work, the better quality you can deliver.

For Yourself

There are a couple of schools of thought here. The first is that it’s perfectly fine to give up on personal projects when you stop caring. I mean, it’s your free time. Why spend it on something you don’t care about?

On the other hand, is a commitment made to yourself any less important than a commitment made to someone else? Many people seem to be perfectly fine with breaking promises to themselves when they’d never willingly do that to a client. Is that wrong?

I usually buy myself a drink and forgive myself, but it’s worth thinking about.

The deciding factor for me is whether my personal project will have any sort of lasting benefit. If whatever I’m designing, writing, or making counts as a long-term investment in my career or quality of life, then it absolutely has to get done, even when I’m not feeling it. Otherwise, I call it a learning experience and move on.

How To Power Through

So, for whatever reason — whether because you have to, or you want to — you’re gonna power through. Here are five ways to do it in style:

1. Start

The hardest part of doing work you don’t care about is starting. This is when you’ll be tempted to procrastinate until the last minute. Try not to.

2. Switch To A Different Part Of The Project

If you can safely (without causing problems) work on a different aspect of the project for a while, try that. The mere variety, the break from the work in front of you before, can boost your morale.

Indeed, working on a different part of the project can give you ideas of getting the most troubling bits done faster or more easily.

3. Do Something Old In A New Way

This one has its pros and cons.

Pro: You can look at this project as a chance to try out a new grid framework, script, code editor, or another tool of some kind. Injecting the process of discovery into an otherwise boring project can make it a lot more fun and even make you look forward to working on it.

Con: You’ll need to plan for extra hours and use some version control; because bringing a new tool or process into play is almost guaranteed to make something interesting go wrong — when this happens, you probably shouldn’t bill the client for the extra hours spent on StackOverflow.

4) Make Like Aziz Ansari And Treat Yo’self

Celebrate the milestones of your project. Don’t celebrate with video games if you need to get any more work done that day. That can go very wrong. But do celebrate. Reward yourself because you’re doing something difficult.

Have a snack. Give yourself a round of applause. Whatever it takes, make yourself look forward.

5) Outsource It

As a last resort, you can always outsource the project to someone else. Just make sure it’s someone you can trust to deliver the same quality of work you would normally provide yourself. Make sure to check it over before handing it off to a client.

Alternatively, you could just outsource the bits of the work that you don’t like. Either way, this is a risky strategy because whoever you outsource to might experience delays or, ironically, not care about the project.


You can do it! I believe in you. The really, really boring projects can seem like huge sinkholes of sadness, but they don’t last forever.


Featured image via Pexels.


The post How To Power Through Designer Apathy first appeared on Webdesigner Depot.

Source de l’article sur Webdesignerdepot

Intermarché choisit les solutions SAP Ariba pour optimiser sa chaîne de valeur et répondre aux attentes des consommateurs

Intermarché, enseigne alimentaire du Groupement Les Mousquetaires s’appuie sur les solutions de procurement Ariba de SAP pour assurer la fluidité et l’efficacité de sa chaine d’approvisionnement et de distribution, afin de répondre au mieux aux enjeux contemporains et aux attentes toujours grandissantes des consommateurs. Grâce à un outil intégré, les différents corps de métiers peuvent collaborer via une seule interface et selon des processus communs, ce qui permet une vision globale sur l’ensemble des flux et un suivi de tous les indicateurs de performance, favorisant la prise de décision et une réponse rapide et fiable aux besoins de l’entreprise et de ses clients.

Le contexte de crise sanitaire et les différentes formes de restrictions de mobilité qui ont traversé le territoire cette dernière année ont montré combien il était important pour une entreprise d’assurer la solidité et la fiabilité de sa chaîne d’approvisionnement.

L’épidémie de la Covid-19 a également accéléré les évolutions des comportements des consommateurs, et il tient à cœur à Intermarché de répondre présent face à ces nouveaux enjeux, c’est pourquoi le groupe a opéré sa transformation. La digitalisation de la vie professionnelle s’accompagne aussi de la digitalisation des modes de consommation, avec un recours plus fréquent au e-commerce. Les enjeux sociétaux et environnementaux font désormais partie intégrante de l’équation lors des choix de consommation des clients. L’hygiène et les impératifs sanitaires ont été exacerbés par la crise. Suite à la crise économique qui résulte de l’épidémie, les consommateurs sont plus que jamais à la recherche de prix très attractifs.

Une solution pour assurer la bonne traçabilité des produits marques de distributeurs et répondre mieux aux attentes des consommateurs.

La stratégie d’Intermarché repose sur six piliers. Le relai « Producteurs & Commerçants », qui est l’ADN d’Intermarché, implique de disposer d’un outil industriel efficient et réactif. Le retravail constant et l’optimisation des recettes, afin de répondre aux attentes des consommateurs désireux de manger mieux. Communiquer sur les avantages des produits Intermarché pour les consommateurs, et leur apporter toutes les informations qu’ils recherchent. Des activations promotionnelles pour répondre aux attentes des clients sur les prix des produits. Des prix bas toute l’année et une forte compétitivité prix, surtout au regard de la crise économique que nous traversons. Une transformation pour plus d’agilité, afin de s’adapter au monde en constante évolution.

La qualité de l’alimentation est plus que jamais au cœur des préoccupations des consommateurs, notamment via les gammes de produits bio. Les solutions Procurement SAP Ariba permettent à Intermarché d’assurer la bonne traçabilité de ses produits, et de répondre aux attentes des clients désireux d’en savoir plus sur la qualité et l’origine des produits qu’ils consomment. Pour assurer cette traçabilité, Intermarché peut s’appuyer sur la méthode et l’efficacité de l’outil Ariba. Celui-ci permet de suivre et analyser les données, afin de piloter et optimiser la chaine d’approvisionnement en fonction des demandes des consommateurs. Enfin, la fluidité des informations entre les collaborateurs et les fournisseurs de production est assurée par l’intégration à cet outil unique.

Une transformation engagée grâce à un outil unique adapté à l’ensemble des profils et corps de métier.

Pour faire face à la croissance du nombre d’appels d’offre et du nombre de fournisseurs, la complexité grandissante des références et l’impératif de toujours réduire le time to market pour répondre aux attentes des consommateurs, il était crucial pour Intermarché de pouvoir s’appuyer sur un outil intégré de pilotage, c’est pourquoi le groupe a choisi les solutions Achats SAP Ariba.

Le programme de transformation d’Intermarché se base sur cinq objectifs :

  1. Améliorer la qualité et l’échange de l’information entre les services et avec le fournisseur.
  2. Disposer de l’agilité nécessaire pour anticiper les événements et problématiques, tels que les renouvellements d’appels d’offres etc.
  3. Homogénéiser les processus d’approvisionnement.
  4. Piloter tous les services et processus, et mettre en place des KPIs.
  5. Améliorer le time to market; les distributeurs producteurs se doivent d’être rapides pour répondre immédiatement aux demandes des consommateurs.

Proposant une vaste variété de produits en marques de distributeurs (frais, épicerie, alimentaire hors import), les 59 usines intégrées au Groupement Les Mousquetaires et les 600 fournisseurs d’Intermarché collaborent au travers d’un outil unique, pour gérer les achats, identifier et anticiper les besoins, suivre l’historique, simplifier les appels d’offre, piloter l’entreprise via des processus homogènes et des indicateurs de performance communs.

Aujourd’hui, les collaborateurs Intermarché se sont approprié l’outil, et l’implantation d’Ariba est une réussite. La collaboration est facilitée par l’intégration sur un outil unique des différents profils et corps de métier qui interviennent tout au long de la chaine de valeurs. Le time to market a été multiplié par 2,25, avec un time to market moyen passé de 18 mois à 8 mois pour les marques de distributeurs. Le groupe ne cache pas ses ambitions de l’abaisser à 6 voire 3 mois en profitant pleinement des capacités proposées par les solutions SAP Ariba.

« La réussite de notre programme de transformation repose sur trois facteurs majeurs. D’abord, mettre les équipes au cœur du projet, les questionner sur les besoins et défis, pour les intégrer à la mise en place de la solution. Ensuite, rester simples et pragmatiques, et ne pas perdre de vue les objectifs de départ. Enfin, anticiper et accompagner le changement, en parallèle de l’élaboration de l’outil, est une clé de réussite. Les collaborateurs et les fournisseurs ont pris en main cet outil, ce qui est un très bon indicateur du succès du projet. Il y a énormément de positif dans ce qui est en train de se passer. » témoignent Matthieu Bidan, chef d’entreprise Intermarché à Gratentour (31) et  Guillaume Delpech, en charge de la direction des Achats Marques Propres Intermarché – Netto.

À propos de SAP

La stratégie de SAP vise à aider chaque organisation à fonctionner en “entreprise intelligente”. En tant que leader du marché des logiciels d’application d’entreprise, nous aidons les entreprises de toutes tailles et de tous secteurs à opérer au mieux : 77 % des transactions commerciales mondiales entrent en contact avec un système SAP®. Nos technologies de Machine Learning, d’Internet des objets (IoT) et d’analytique avancées aident nos clients à transformer leurs activités en “entreprises intelligentes”. SAP permet aux personnes et aux organisations d’avoir une vision approfondie de leur business et favorise la collaboration afin qu’elles puissent garder une longueur d’avance sur leurs concurrents. Nous simplifions la technologie afin que les entreprises puissent utiliser nos logiciels comme elles le souhaitent – sans interruption. Notre suite d’applications et de services de bout en bout permet aux clients privés et publics de 25 secteurs d’activité dans le monde de fonctionner de manière rentable, de s’adapter en permanence et de faire la différence. Avec son réseau mondial de clients, partenaires, employés et leaders d’opinion, SAP aide le monde à mieux fonctionner et à améliorer la vie de chacun.

Pour plus d’informations, visitez le site .

Contacts presse SAP
Daniel Margato, Directeur Communication : 06 64 25 38 08 –
Pauline Barriere : –
SAP News Center. Suivez SAP sur Twitter : @SAPNews.


The post Intermarché choisit les solutions SAP Ariba pour optimiser sa chaîne de valeur et répondre aux attentes des consommateurs appeared first on SAP France News.

Source de l’article sur

Popular Design News of the Week: April 26, 2021 – May 2, 2021

Every day design fans submit incredible industry stories to our sister-site, Webdesigner News. Our colleagues sift through it, selecting the very best stories from the design, UX, tech, and development worlds and posting them live on the site.

The best way to keep up with the most important stories for web professionals is to subscribe to Webdesigner News or check out the site regularly. However, in case you missed a day this week, here’s a handy compilation of the top curated stories from the last seven days. Enjoy!

Curated List Of Awesome Lists

20 Best New Websites, April 2021

I Studied The Fonts Of The Top 1000 Websites; Here’s What I Learned

Markdown To Slideshow

WordPress Checklist: 17 Steps to Launching Your Site

Understanding Easing Functions For CSS Animations And Transitions

This is Tech! Illustrations About Technical Processes

This Amazing AI Tool Lets You Create Human Faces From Scratch

When You Shouldn’t Display Radio Buttons in a List Format

Lightweight, Privacy-First, Open-Source Comment System

8 Stunning Examples of CSS Glassmorphism Effects

CSS Tips


The post Popular Design News of the Week: April 26, 2021 – May 2, 2021 first appeared on Webdesigner Depot.

Source de l’article sur Webdesignerdepot

Popular Design News Of The Week: April 19, 2021 – April 25, 2021

Every day design fans submit incredible industry stories to our sister-site, Webdesigner News. Our colleagues sift through it, selecting the very best stories from the design, UX, tech, and development worlds and posting them live on the site.

The best way to keep up with the most important stories for web professionals is to subscribe to Webdesigner News or check out the site regularly. However, in case you missed a day this week, here’s a handy compilation of the top curated stories from the last seven days. Enjoy!

Coca-Cola Presents New Packaging Design

Seven Mistakes To Avoid In Your Technical Interviews

10 Interesting Ways to Plan Web Design Projects

Web Developer’s Guide To AVIF Images


3 Effective Ways To Improve Your Site’s Carbon Footprint

Pure CSS Before & After Image Slider


25 Exciting New Tools For Designers, April 2021

Text In A Circle Using CSS & JavaScript

A to Z of Adobe XD: Tips & Tricks!

Content-Aware Image Resizing In JavaScript

Remove Distractions and Waste from Your Website

Top 18 Best Practices for Writing Super Readable Code



The post Popular Design News Of The Week: April 19, 2021 – April 25, 2021 first appeared on Webdesigner Depot.

Source de l’article sur Webdesignerdepot

No-Code:  »It’s a Trap! »

Gartner predicts that by 2023, over 50% of medium to large enterprises will have adopted a Low-code/No-code application as part of their platform development.
The proliferation of Low-code/No-code tooling can be partially attributed to the COVID-19 pandemic, which has put pressure on businesses around the world to rapidly implement digital solutions. However, adoption of these tools — while indeed accelerated by the pandemic — would have occurred either way.
Even before the pandemic, the largest, richest companies had already formed an oligopsony around the best tech talent and most advanced development tools. Low-Code/No-code, therefore, is an attractive solution for small and mid-sized organizations to level the playing field, and it does so by giving these smaller players the power to do more with their existing resources.
While these benefits are often realized in the short term, the long-term effect of these tools is often shockingly different. The promise of faster and cheaper delivery is the catch — or lure — inside this organizational mousetrap, whereas backlogs, vendor contracts, technical debts, and constant updates are the hammer.
So, what exactly is the No-Code trap, and how can we avoid it?

What is a No-Code Tool?

First, let’s make sure we clear up any confusion regarding naming. So far I have referred Low-Code and No-Code as if they were one term. It’s certainly easy to confuse them — even large analyst firms seem to have a hard time differentiating between the two — and in the broader context of this article, both can lead to the same set of development pitfalls.
Under the magnifying glass, however, there are lots of small details and capabilities that differentiate Low-code and No-code solutions. Most of them aren’t apparent at the UI level, leading to much of the confusion between where the two come from.
In this section, I will spend a little bit of time exploring the important differences between those two, but only to show that when it comes to the central premise of this article they are virtually equivalent.

Low-Code vs. No-Code Tools

The goal behind Low-Code is to minimize the amount of coding necessary for complex tasks through a visual interface (such as Drag ‘N’ Drop) that integrates existing blocks of code into a workflow.
Skilled professionals have the potential to work smarter and faster with Low-Code tools because repetitive coding or duplicating work is streamlined. Through this, they can spend less time on the 80% of work that builds the foundation and focuses more on optimizing the 20% that makes it different. It, therefore, takes on the role of an entry-level employee doing the grunt work for more senior developers/engineers.
No-Code has a very similar look and feel to Low-Code, but is different in one very important dimension. Where Low-Code is meant to optimize the productivity of developers or engineers that already know how to code (even if just a little), No-Code is built for business and product managers that may not know any actual programming languages. It is meant to equip non-technical workers with the tools they need to create applications without formal development training.
No-Code applications need to be self-contained and everything the No-Code vendor thinks the user may need is already built into the tool.
As a result, No-Code applications create a lot of restrictions for the long-term in exchange for quick results in the short-term. This is a great example of a ‘deliberate-prudent’ scenario in the context of the Technical Debt Quadrant, but more on this later.

Advantages of No-Code Solutions

The appeal of both Low-Code and No-Code is pretty obvious. By removing code organizations can remove those that write it — developers — because they are expensive, in short supply, and fundamentally don’t produce things quickly.
The benefits of these two forms of applications in their best forms can be pretty substantial:
  • Resources: Human Capital is becoming increasingly scarce — and therefore expensive. This can stop a lot of ambitious projects dead in their tracks. Low-Code and No-Code tools minimize the amount of specialized technical skills needed to get an application of the ground, which means things can get done more quickly and at a lower cost.
  • Low Risk/High ROISecurity processes, data integrations, and cross-platform support are all built into Low-Code and No-Code tools, meaning less risk and more time to focus on your business goals.
  • Moving to Production: Similarly, for both types of tools a single click is all it takes to send or deploy a model or application you built to production.
Looking at these advantages, it is no wonder that both Low-Code and No-Code have been taking industries by storm recently. While being distinctly different in terms of users, they serve the same goal — that is to say, faster, safer and cheaper deployment. Given these similarities, both terms will be grouped together under the ‘No-Code’ term for the rest of this article unless otherwise specified.

List of No-Code Data Tools

So far, we have covered the applications of No-Code in a very general way, but for the rest of this article, I would like to focus on data modeling. No-Code tools are prevalent in software development, but have also, in particular, started to take hold in this space, and some applications even claim to be an alternative to SQL and other querying languages (crazy, right?!). My reasons for focusing on this are two-fold: 
Firstly, there is a lot of existing analysis around this problem for software development and very little for data modeling. Secondly, this is also the area in which I have the most expertise.
Now let’s take a look at some of the vendors that provide No-Code solutions in this space. These in no way constitute a complete list and are, for the most part, not exclusively built for data modeling. 

1. No-Code Data Modeling in Power BI

Power BI was created by Microsoft and aims to provide interactive visualizations and business intelligence capabilities to all types of business users. Their simple interface is meant to allow end-users to create their own reports and dashboards through a number of features, including data mapping, transformation, and visualization through dashboards. Power BI does support some R coding capabilities for visualization, but when it comes to data modeling, it is a true No-Code tool.

2. Alteryx as a Low-Code Alternative

Alteryx is meant to make advanced analytics accessible to any data worker. To achieve this, it offers several data analytics solutions. Alteryx specializes in self-service analytics with an intuitive UI. Their offerings can be used as Extract, Transform, Load (ETL) Tools within their own framework. Alteryx allows data workers to organize their data pipelines through their custom features and SQL code blocks. As such, they are easily identified as a Low-Code solution.

3. Is Tableau a No-Code Data Modeling Solution?

Tableau is a visual analytics platform and a direct competitor to Power BI. They were recently acquired by Salesforce which is now hoping to ‘transform the way we use data to solve problems—empowering people and organizations to make the most of their data.’ It is also a pretty obvious No-Code platform that is supposed to appeal to all types of end-users. As of now, it offers fewer tools for data modeling than Power BI, but that is likely to change in the future.

4. Looker is a No-Code Alternative to SQL

Looker is a business intelligence software and big data analytics platform that promises to help you explore, analyze, and share real-time business analytics easily. Very much in line with Tableau and Power BI, it aims to make non-technical end-users proficient in a variety of data tasks such as transformation, modeling, and visualization.

You might be wondering why I am including so many BI/Visualization platforms when talking about potential alternatives to SQL. After all, these tools are only set up to address an organization’s reporting needs, which constitute only one of the use cases for data queries and SQL. This is certainly a valid point, so allow me to clarify my reasoning a bit more.

While it is true that reporting is only one of many potential uses for SQL, it is nevertheless an extremely important one. There is a good reason why there are so many No-Code BI tools in the market—to address heightening demand from enterprises around the world — and therefore, it is worth taking a closer look at their almost inevitable shortcomings.

Source de l’article sur DZONE

Qu’est-ce qu’un Data Warehouse ?

Un data warehouse (entrepôt de données) est un système de stockage numérique qui connecte et harmonise de grandes quantités de données provenant de nombreuses sources différentes. Il a pour but d’alimenter la Business Intelligence (BI), le reporting et l’analyse, ainsi que soutenir la conformité aux exigences réglementaires afin que les entreprises puissent exploiter leurs données et prendre des décisions intelligentes fondées sur les données. Les data warehouse stockent les données actuelles et historiques dans un seul et même endroit et constituent ainsi une source unique de vérité pour une organisation.

Les données sont envoyées vers un data warehouse à partir de systèmes opérationnels (tels qu’un système ERP ou CRM), de bases de données et de sources externes comme les systèmes partenaires, les appareils IoT, les applications météo ou les réseaux sociaux, généralement de manière régulière. L’émergence du cloud computing a changé la donne. Ces dernières années, le stockage des données a été déplacé de l’infrastructure sur site traditionnelle vers de multiples emplacements, y compris sur site, dans le Cloud privé et dans le Cloud public.

Les data warehouse modernes sont conçus pour gérer à la fois les données structurées et les données non structurées, comme les vidéos, les fichiers image et les données de capteurs. Certains utilisent les outils analytiques intégrés et la technologie de base de données in-memory (qui conserve l’ensemble de données dans la mémoire de l’ordinateur plutôt que dans l’espace disque) pour fournir un accès en temps réel à des données fiables et favoriser une prise de décision en toute confiance. Sans entreposage de données, il est très difficile de combiner des données provenant de sources hétérogènes, de s’assurer qu’elles sont au bon format pour les analyses et d’obtenir une vue des données sur le court terme et sur le long terme.

Schéma qui montre ce qu'est un data warehouse

Avantages de l’entreposage de données

Un data warehouse bien conçu constitue la base de tout programme de BI ou d’analyse réussi. Son principal objectif est d’alimenter les rapports, les tableaux de bord et les outils analytiques devenus indispensables aux entreprises d’aujourd’hui. Un entrepôt de données fournit les informations dont vous avez besoin pour prendre des décisions basées sur les données et vous aide à faire les bons choix, que ce soit pour le développement de nouveaux produits ou la gestion des niveaux de stock. Un data warehouse présente de nombreux avantages. En voici quelques-uns :

  • Un meilleur reporting analytique : grâce à l’entreposage de données, les décideurs ont accès à des données provenant de plusieurs sources et n’ont plus besoin de prendre des décisions basées sur des informations incomplètes.
  • Des requêtes plus rapides : les data warehouse sont spécialement conçus pour permettre l’extraction et l’analyse rapides des données. Avec un entrepôt de données, vous pouvez très rapidement demander de grandes quantités de données consolidées avec peu ou pas d’aide du service informatique.
  • Une amélioration de la qualité des données : avant de charger les données dans l’entrepôt de données le système met en place des nettoyages de données afin de garantir que les données sont converties dans un seul et même format dans le but de faciliter les analyses (et les décisions), qui reposent alors sur des données précises et de haute qualité.
  • Une visibilité sur les données historiques : en stockant de nombreuses données historiques, un data warehouse permet aux décideurs d’analyser les tendances et les défis passés, de faire des prévisions et d’améliorer l’organisation au quotidien.

Capture d'écran de la solution SAP Data Warehouse Cloud

Que peut stocker un data warehouse ?

Lorsque les data warehouse sont devenus populaires à la fin des années 1980, ils étaient conçus pour stocker des informations sur les personnes, les produits et les transactions. Ces données, appelées données structurées, étaient bien organisées et mises en forme pour en favoriser l’accès. Cependant, les entreprises ont rapidement voulu stocker, récupérer et analyser des données non structurées, comme des documents, des images, des vidéos, des e-mails, des publications sur les réseaux sociaux et des données brutes issues de capteurs.

Un entrepôt de données moderne peut contenir des données structurées et des données non structurées. En fusionnant ces types de données et en éliminant les silos qui les séparent, les entreprises peuvent obtenir une vue complète et globale sur les informations les plus précieuses.

Termes clés

Il est essentiel de bien comprendre un certain nombre de termes en lien avec les data warehouse. Les plus importants ont été définis ci-dessous. Découvrez d’autres termes et notre FAQ dans notre glossaire.

Data warehouse et base de données

Les bases de données et les data warehouse sont tous deux des systèmes de stockage de données, mais diffèrent de par leurs objectifs. Une base de données stocke généralement des données relatives à un domaine d’activité particulier. Un entrepôt de données stocke les données actuelles et historiques de l’ensemble de l’entreprise et alimente la BI et les outils analytiques. Les data warehouse utilisent un serveur de base de données pour extraire les données présentes dans les bases de données d’une organisation et disposent de fonctionnalités supplémentaires pour la modélisation des données, la gestion du cycle de vie des données, l’intégration des sources de données, etc.

Data warehouse et lac de données

Les data warehouse et les lacs de données sont utilisés pour stocker le Big Data, mais sont des systèmes de stockage très différents. Un data warehouse stocke des données qui ont été formatées dans un but spécifique, tandis qu’un lac de données stocke les données dans leur état brut, non traité, dont l’objectif n’a pas encore été défini. Les entrepôts de données et les lacs de données se complètent souvent. Par exemple, lorsque des données brutes stockées dans un lac s’avèrent utiles pour répondre à une question, elles peuvent être extraites, nettoyées, transformées et utilisées dans un data warehouse à des fins d’analyse. Le volume de données, les performances de la base de données et les coûts du stockage jouent un rôle important dans le choix de la solution de stockage adaptée.

Diagramme qui montre la différence entre un data warehouse et un lac de données

Data warehouse et datamart

Un datamart est une sous-section d’un data warehouse, partitionné spécifiquement pour un service ou un secteur d’activité, comme les ventes, le marketing ou la finance. Certains datamarts sont également créés à des fins opérationnelles autonomes. Alors qu’un data warehouse sert de magasin de données central pour l’ensemble de l’entreprise, un datamart utilise des données pertinentes à un groupe d’utilisateurs désigné. Ces utilisateurs peuvent alors accéder plus facilement aux données, accélérer leurs analyses et contrôler leurs propres données. Plusieurs datamarts sont souvent déployés dans un data warehouse.

Diagramme d'un data mart et de son fonctionnement

Quels sont les composants clés d’un data warehouse ?

Un data warehouse classique comporte quatre composants principaux : une base de données centrale, des outils ETL (extraction, transformation, chargement), des métadonnées et des outils d’accès. Tous ces composants sont conçus pour être rapides afin de vous assurer d’obtenir rapidement des résultats et vous permettre d’analyser les données à la volée.

Diagramme montrant les composants d'un data warehouse

  1. Base de données centrale : une base de données sert de fondement à votre data warehouse. Depuis le départ, on utilisait essentiellement des bases de données relationnelles standard exécutées sur site ou dans le Cloud. Mais en raison du Big Data, du besoin d’une véritable performance en temps réel et d’une réduction drastique des coûts de la RAM, les bases de données in-memory sont en train de monter en puissance.
  2. Intégration des données : les données sont extraites des systèmes source et modifiées pour aligner les informations afin qu’elles puissent être rapidement utilisées à des fins analytiques à l’aide de différentes approches d’intégration des données telles que l’ETL (extraction, transformation, chargement) et les services de réplication de données en temps réel, de traitement en masse, de transformation des données et de qualité et d’enrichissement des données.
  3. Métadonnées : les métadonnées sont des données relatives à vos données. Elles indiquent la source, l’utilisation, les valeurs et d’autres fonctionnalités des ensembles de données présents dans votre data warehouse. Il existe des métadonnées de gestion, qui ajoutent du contexte à vos données, et des métadonnées techniques, qui décrivent comment accéder aux données, définissent leur emplacement ainsi que leur structure.
  4. Outils d’accès du data warehouse : les outils d’accès permettent aux utilisateurs d’interagir avec les données de votre data warehouse. Exemples d’outils d’accès : outils de requête et de reporting, outils de développement d’applications, outils d’exploration de données et outils OLAP.

Architecture de data warehouse 

Auparavant, les data warehouse fonctionnaient par couches, lesquelles correspondaient au flux des données de gestion.

Diagramme de l'architecture d'un data warehouse

Couche de données

Les données sont extraites de vos sources, puis transformées et chargées dans le niveau inférieur à l’aide des outils ETL. Le niveau inférieur comprend votre serveur de base de données, les datamarts et les lacs de données. Les métadonnées sont créées à ce niveau et les outils d’intégration des données, tels que la virtualisation des données, sont utilisés pour combiner et agréger les données en toute transparence.

Couche sémantique

Au niveau intermédiaire, les serveurs OLAP (Online Analytical Processing) et OLTP (Online Transaction Processing) restructurent les données pour favoriser des requêtes et des analyses rapides et complexes.

Couche analytique

Le niveau supérieur est la couche du client frontend. Il contient les outils d’accès du data warehouse qui permettent aux utilisateurs d’interagir avec les données, de créer des tableaux de bord et des rapports, de suivre les KPI, d’explorer et d’analyser les données, de créer des applications, etc. Ce niveau inclut souvent un workbench  ou une zone de test pour l’exploration des données et le développement de nouveaux modèles de données.

Un data warehouse standard comprend les trois couches définies ci-dessus. Aujourd’hui, les entrepôts de données modernes combinent OLTP et OLAP dans un seul système.

Les data warehouse, conçus pour faciliter la prise de décision, ont été essentiellement créés et gérés par les équipes informatiques. Néanmoins, ces dernières années, ils ont évolué pour renforcer l’autonomie des utilisateurs fonctionnels, réduisant ainsi leur dépendance aux équipes informatiques pour accéder aux données et obtenir des informations exploitables. Parmi les fonctionnalités clés d’entreposage de données qui ont permis de renforcer l’autonomie des utilisateurs fonctionnels, on retrouve les suivantes :

  1. La couche sémantique ou de gestion fournit des expressions en langage naturel et permet à tout le monde de comprendre instantanément les données, de définir des relations entre les éléments dans le modèle de données et d’enrichir les zones de données avec de nouvelles informations.
  2. Les espaces de travail virtuels permettent aux équipes de regrouper les connexions et modèles de données dans un lieu sécurisé et géré, afin de mieux collaborer au sein d’un espace commun, avec un ensemble de données commun.
  3. Le Cloud a encore amélioré la prise de décision en permettant aux employés de disposer d’un large éventail d’outils et de fonctionnalités pour effectuer facilement des tâches d’analyse des données. Ils peuvent connecter de nouvelles applications et de nouvelles sources de données sans avoir besoin de faire appel aux équipes informatiques.


The Future of Analytics Has Arrived

Click the button below to load the content from YouTube.

The Future of Analytics Has Arrived

Kate Wright, responsable de la Business Intelligence augmentée chez SAP, évoque la valeur d’un data warehouse Cloud moderne.

Les 7 principaux avantages d’un data warehouse Cloud  

Les data warehouse Cloud gagnent en popularité, à juste titre. Ces entrepôts modernes offrent plusieurs avantages par rapport aux versions sur site traditionnelles. Voici les sept principaux avantages d’un data warehouse Cloud :

  1. Déploiement rapide : grâce à l’entreposage de données Cloud, vous pouvez acquérir une puissance de calcul et un stockage de données presque illimités en quelques clics seulement, et créer votre propre data warehouse, datamarts et systèmes de test en quelques minutes.
  2. Faible coût total de possession (TCO) : les modèles de tarification du data warehouse en tant que service (DWaaS) sont établis de sorte que vous payez uniquement les ressources dont vous avez besoin, lorsque vous en avez besoin. Vous n’avez pas besoin de prévoir vos besoins à long terme ou de payer pour d’autres traitements tout au long de l’année. Vous pouvez également éviter les coûts initiaux tels que le matériel coûteux, les salles de serveurs et le personnel de maintenance. Séparer les coûts du stockage des coûts informatiques vous permet également de réduire les dépenses.
  3. Élasticité : un data warehouse Cloud vous permet d’ajuster vos capacités à la hausse ou à la baisse selon vos besoins. Le Cloud offre un environnement virtualisé et hautement distribué capable de gérer d’immenses volumes de données qui peuvent diminuer ou augmenter.
  4. Sécurité et restauration après sinistre : dans de nombreux cas, les data warehouse Cloud apportent une sécurité des données et un chiffrage plus forts que les entrepôts sur site. Les données sont également automatiquement dupliquées et sauvegardées, ce qui vous permet de minimiser le risque de perte de données.
  5. Technologies en temps réel : les data warehouse Cloud basés sur la technologie de base de données in-memory présentent des vitesses de traitement des données extrêmement rapides, offrant ainsi des données en temps réel et une connaissance instantanée de la situation.
  6. Nouvelles technologies : les data warehouse Cloud vous permettent d’intégrer facilement de nouvelles technologies telles que l’apprentissage automatique, qui peuvent fournir une expérience guidée aux utilisateurs fonctionnels et une aide décisionnelle sous la forme de suggestions de questions à poser, par exemple.
  7. Plus grande autonomie des utilisateurs fonctionnels : les data warehouse Cloud offrent aux employés, de manière globale et uniforme, une vue unique sur les données issues de nombreuses sources et un vaste ensemble d’outils et de fonctionnalités pour effectuer facilement des tâches d’analyse des données. Ils peuvent connecter de nouvelles applications et de nouvelles sources de données sans avoir besoin de faire appel aux équipes informatiques.
Capture d'écran de la solution SAP Data Warehouse Cloud
L’entreposage de données prend en charge l’analyse complète des dépenses de l’entreprise par service, fournisseur, région et statut, pour n’en citer que quelques-unes.

Meilleures pratiques concernant l’entreposage des données

Pour atteindre vos objectifs et économiser du temps et de l’argent, il est recommandé de suivre certaines étapes éprouvées lors de la création d’un data warehouse ou l’ajout de nouvelles applications à un entrepôt existant. Certaines sont axées sur votre activité tandis que d’autres s’inscrivent dans le cadre de votre programme informatique global. Vous pouvez commencer avec la liste de meilleures pratiques ci-dessous, mais vous en découvrirez d’autres au fil de vos collaborations avec vos partenaires technologiques et de services.

Meilleures pratiques métier

Meilleures pratiques informatiques

Définir les informations dont vous avez besoin. Une fois que vous aurez cerné vos besoins initiaux, vous serez en mesure de trouver les sources de données qui vous aideront à les combler. La plupart du temps, les groupes commerciaux, les clients et les fournisseurs auront des recommandations à vous faire. 

Surveiller la performance et la sécurité. Les informations de votre data warehouse sont certes précieuses, mais elles doivent quand même être facilement accessibles pour apporter de la valeur à l’entreprise. Surveillez attentivement l’utilisation du système pour vous assurer que les niveaux de performance sont élevés. 

Documenter l’emplacement, la structure et la qualité de vos données actuelles. Vous pouvez ensuite identifier les lacunes en matière de données et les règles de gestion pour transformer les données afin de répondre aux exigences de votre entrepôt.

Gérer les normes de qualité des données, les métadonnées, la structure et la gouvernance. De nouvelles sources de données précieuses sont régulièrement disponibles, mais nécessitent une gestion cohérente au sein d’un data warehouse. Suivez les procédures de nettoyage des données, de définition des métadonnées et de respect des normes de gouvernance.

Former une équipe. Cette équipe doit comprendre les dirigeants, les responsables et le personnel qui utiliseront et fourniront les informations. Par exemple, identifiez le reporting standard et les KPI dont ils ont besoin pour effectuer leurs tâches.

Fournir une architecture agile. Plus vos unités d’affaires et d’entreprise utiliseront les données, plus vos besoins en matière de datamarts et d’entrepôts augmenteront. Une plate-forme flexible s’avérera bien plus utile qu’un produit limité et restrictif. 

Hiérarchiser vos applications de data warehouse. Sélectionnez un ou deux projets pilotes présentant des exigences raisonnables et une bonne valeur commerciale.

Automatiser les processus tels que la maintenance. Outre la valeur ajoutée apportée à la Business Intelligence, l’apprentissage automatique peut automatiser les fonctions de gestion technique du data warehouse pour maintenir la vitesse et réduire les coûts d’exploitation.

Choisir un partenaire technologique compétent pour l’entrepôt de données. Ce dernier doit offrir les services d’implémentation et l’expérience dont vous avez besoin pour la réalisation de vos projets. Assurez-vous qu’il puisse répondre à vos besoins en déploiement, y compris les services Cloud et les options sur site. 

Utiliser le Cloud de manière stratégique. Les unités d’affaires et les services ont des besoins en déploiement différents. Utilisez des systèmes sur site si nécessaire et misez sur des data warehouse Cloud pour bénéficier d’une évolutivité, d’une réduction des coûts et d’un accès sur téléphone et tablette.  

Développer un bon plan de projet. Travaillez avec votre équipe sur un plan et un calendrier réalistes qui rendent possible les communications et le reporting de statut.

En résumé 

Les data warehouse modernes, et, de plus en plus, les data warehouse Cloud, constitueront un élément clé de toute initiative de transformation numérique pour les entreprises mères et leurs unités d’affaires. Les data warehouse exploitent les systèmes de gestion actuels, en particulier lorsque vous combinez des données issues de plusieurs systèmes internes avec de nouvelles informations importantes provenant d’organisations externes.

Les tableaux de bord, les indicateurs de performance clés, les alertes et le reporting répondent aux exigences des cadres dirigeants, de la direction et du personnel, ainsi qu’aux besoins des clients et des fournisseurs importants. Les data warehouse fournissent également des outils d’exploration et d’analyse de données rapides et complexes, et n’ont pas d’impact sur les performances des autres systèmes de gestion.

Pictogramme qui représente un entrepôt de données

Découvrez la solution SAP Data Warehouse Cloud

Unifiez vos données et analyses pour prendre des décisions avisées et obtenir la flexibilité nécessaire pour un contrôle efficace des coûts, notamment grâce à un paiement selon l’utilisation.

En savoir plus

Publié en anglais sur

The post Qu’est-ce qu’un Data Warehouse ? appeared first on SAP France News.

Source de l’article sur

Beginner’s Guide To Developing a Scalable Web Business


In today’s world of fast-developing technology, people want access to data instantly. Waiting for a web page to load or an image to upload is no more an option. An application not designed aptly and flexible to handle increased workload and users—everything will be simply left in the dust.

Scalability is all about handling growth. A scalable web business should be able to efficiently and seamlessly adapt to the growth, handle an increase in load and users, without disturbing the end-users. A web application and website that is designed for scale will grow with the growing needs of the company. That’s why it is important to design a web business by keeping scalability in mind.

Source de l’article sur DZONE