Articles

Agroalimentaire : Ocealia bascule vers l’offre RISE with SAP avec PASàPAS

Ocealia opte pour l’ERP SAP S/4HANA en mode cloud, déployé chez un hyperscaler avec l’appui des équipes de PASàPAS. Un projet mené à bien en huit mois, qui permet au groupe de disposer d’un outil innovant, sur le plan fonctionnel comme ergonomique.

 

Ocealia est un acteur du secteur de l’agroalimentaire présent dans le centre ouest de la France (Poitou-Charentes, Dordogne et Limousin). Particulièrement polyvalent, ce groupe coopératif rassemble 10.000 adhérents, avec un réseau de distribution couvrant 340 implantations.

Ses multiples filiales lui permettent de couvrir un vaste spectre d’activités : productions végétales et animales, viticulture, jardinerie, snacking, mais aussi de l’alimentation animale ainsi qu’une filiale dédiée au transport. Ocealia réalise un chiffre d’affaires annuel de 810 millions d’euros, pour 1533 collaborateurs.

En 2009, Ocealia met en place un ERP SAP, qui l’accompagne depuis dans sa croissance et ses opérations de fusion/acquisition. Cet ERP reste aujourd’hui une des pièces centrales du système d’information du groupe.

« De multiples facteurs nous ont poussés à réfléchir à la modernisation de notre ERP, explique Philippe Cote, DSI d’Ocealia. Nous avions la volonté d’intégrer de nouveaux processus dans l’ERP, comme la gestion de la trésorerie et des rapprochements bancaires. La fin de maintenance annoncée de l’ERP SAP ECC 6 a également motivé cette décision. Nous souhaitions aussi bénéficier d’autres avancées apportées par l’ERP SAP S/4HANA : interface utilisateur rénovée, meilleure automatisation des processus, analytique intégrée ou encore l’accès à de nouvelles technologies comme l’IoT ou l’IA. »

Enfin, Ocealia voulait profiter de ce projet de conversion pour basculer vers le cloud d’un hyperscaler. Son contrat d’hébergement arrivant à terme en mars 2022, le nouvel ERP devait être prêt à cette date.

 

Un choix mûrement réfléchi

Le projet démarre en septembre 2020, lors d’un passage du CODIR à l’Experience Business Center parisien de SAP. Une visite suivie de démonstrations permettant de découvrir les fonctionnalités clés de l’ERP SAP S/4HANA.

Convaincu, Ocealia se tourne vers PASàPAS pour prendre en charge ce projet de migration de SAP ECC vers l’ERP SAP S/4HANA. « PASàPAS assure la TMA de notre environnement SAP depuis de nombreuses années, rappelle Philippe Cote. Ses équipes nous ont également accompagnés en 2018 lors de la mise à niveau de notre environnement SAP ECC et du passage vers la base de données SAP HANA. »

De janvier à mai 2021, Ocealia et PASàPAS travaillent au cadrage et à la méthodologie du projet. « Cette phase nous a permis de définir nos besoins, de structurer et de sécuriser nos travaux. Nous avons choisi de migrer notre ERP à fonctionnalités équivalentes, tout en définissant une feuille de route permettant l’intégration ultérieure de nouvelles fonctionnalités. »

En mai 2021, une “conversion à blanc” avec les données de productions est mis en place, afin de s’assurer de la faisabilité de la migration, mais également de permettre la réalisation de premiers tests. Cette préparation minutieuse a participé à un déroulé fluide du projet pendant les huit mois suivants, avec un démarrage à la date prévue et sans difficulté majeure, le 14 février 2022.

« La conversion factory de PASàPAS est indéniablement un atout sur ce type de projet. Les processus sont bien rodés, avec un suivi hebdomadaire des tâches à réaliser qui permet de s’assurer de ne rien rater, tout en offrant l’opportunité de régler les problèmes au fil de l’eau. »

Agroalimentaire : Ocealia bascule vers l’offre RISE with SAP avec PASàPAS (French)

Une bascule vers un hyperscaler

Lors de la migration vers l’ERP SAP S/4HANA, Ocealia a fait le choix de passer d’un cloud privé hébergé vers une solution proposée par un hyperscaler. En l’occurrence Google, au travers de l’offre RISE with SAP S/4HANA.

« Nous étions déjà clients de Google sur son offre Workspace et souhaitions continuer à travailler avec cette entreprise, explique Philippe Cote. Aujourd’hui, nous avons d’un côté une offre RISE, hébergée sur les serveurs de Google et garantie par SAP, et d’autre part des serveurs complémentaires dédiés aux autres composants de notre SI SAP (BW, BO, Content Server…), hébergés eux aussi chez Google, mais opérés par PASàPAS.”

La conciergerie, un service de pilotage global mis en place par PASàPAS, permet de faciliter la gestion au quotidien de l’ensemble. « La partie technologique est entièrement prise en charge par PASàPAS, ce qui nous permet de nous concentrer sur les développements métiers. »

Via ce service, PASàPAS accompagne également ses clients de façon proactive dans la gestion des cycles de vie de leur solution ERP dans RISE en leur proposant également des services complémentaires contextualisés à leurs organisations.

 

Un ERP en cours de fiorisation

« C’est un projet réussi, résume le DSI d’Ocealia. Les équipes se sont bien entendues, malgré les périodes de stress et de tension… et la crise sanitaire, qui nous a obligés à travailler en distanciel. Les métiers ont parfaitement joué le jeu, avec beaucoup de temps passé sur les tests. »

La migration à fonctionnalités équivalentes a permis de limiter les perturbations pour les utilisateurs. Mais Ocealia entend bien profiter rapidement des avancées proposées par l’ERP SAP S/4HANA. Les travaux ont ainsi débuté sur la gestion de la trésorerie et des rapprochements bancaires. D’ici la fin de l’année, des tuiles Fiori seront également déployées sur des fonctionnalités plus classiques, afin de quitter progressivement le mode transactionnel pour adopter une approche plus moderne.

« Nous allons mettre en place un laboratoire interne regroupant des utilisateurs qui disposeront d’un environnement “fiorisé”. Ceci nous permettra ainsi d’avancer sur la modernisation de l’interface utilisateur de notre ERP, tout en formant des key users qui participeront à son adoption auprès des équipes métiers. »

The post Agroalimentaire : Ocealia bascule vers l’offre RISE with SAP avec PASàPAS appeared first on SAP France News.

Source de l’article sur sap.com

Maîtrise de l'ingénierie des modèles de langage AI.

La maîtrise de l’ingénierie des modèles de langage AI est une compétence essentielle pour les développeurs qui souhaitent créer des applications modernes.

Ingénierie de prompt, un aspect vital pour tirer le plein potentiel des modèles de langage IA

2. Testing

Testing is an important part of prompt engineering. It helps to identify any errors or inconsistencies in the instructions given to the model. This can be done by running the model on a set of test data and comparing the results with the desired output. This helps to identify any potential issues and allows for adjustments to be made accordingly.

3. Iterative Process

Prompt engineering is an iterative process. After testing, adjustments can be made to the instructions given to the model. This can include changing the wording, adding additional information, or providing more specific instructions. The process is repeated until the desired output is achieved.

Limitations of Prompt Engineering

Prompt engineering is not without its limitations. It can be difficult to write clear and specific instructions that are tailored to the task at hand. Additionally, the process can be time-consuming and requires a certain level of expertise in order to achieve the desired results. Finally, prompt engineering is not a one-size-fits-all solution and may not be suitable for all tasks.

Potential Applications of Prompt Engineering

Prompt engineering has a wide range of potential applications. It can be used to improve the accuracy of AI language models, such as natural language processing (NLP) and machine translation. It can also be used to create more engaging and interactive user experiences, such as chatbots and virtual assistants. Finally, prompt engineering can be used to develop more accurate and contextually relevant responses from AI systems.

Principes de l’ingénierie de prompt

1. Écrire des instructions claires et spécifiques

Le succès de l’ingénierie de prompt commence par fournir des instructions claires et non ambiguës. Clair ne signifie pas nécessairement une courte description. Être spécifique sur la sortie souhaitée aide le modèle à comprendre plus précisément la tâche. Par exemple, demandez à LLA d’être un expert dans le domaine que vous demandez.

2. Test

Le test est une partie importante de l’ingénierie de prompt. Il permet d’identifier toutes les erreurs ou incohérences dans les instructions données au modèle. Cela peut être fait en faisant fonctionner le modèle sur un jeu de données de test et en comparant les résultats avec la sortie souhaitée. Cela permet d’identifier tout problème potentiel et permet d’effectuer des ajustements en conséquence.

3. Processus itératif

L’ingénierie de prompt est un processus itératif. Après le test, des ajustements peuvent être apportés aux instructions données au modèle. Cela peut inclure le changement du mot, l’ajout d’informations supplémentaires ou la fourniture d’instructions plus spécifiques. Le processus est répété jusqu’à ce que la sortie souhaitée soit obtenue.

Limites de l’ingénierie de prompt

L’ingénierie de prompt n’est pas sans ses limites. Il peut être difficile d’écrire des instructions claires et spécifiques qui sont adaptées à la tâche à accomplir. De plus, le processus peut être long et nécessite un certain niveau d’expertise pour obtenir les résultats souhaités. Enfin, l’ingénierie de prompt n’est pas une solution unique et peut ne pas être adaptée à toutes les tâches.

Applications
Source de l’article sur DZONE

Amélioration de la sécurité IoT: Outils d'analyse de sécurité IoT

Les outils d’analyse de sécurité IoT sont essentiels pour améliorer la sécurité des objets connectés. Ils offrent une protection contre les menaces et permettent de garantir la confidentialité des données.

L’arrivée de l’Internet des Objets (IoT) a ouvert une nouvelle ère de connectivité, révolutionnant divers secteurs, notamment les foyers, les industries et les zones urbaines. Cependant, cette connectivité étendue entraîne également des défis de sécurité importants, nécessitant des mécanismes robustes de détection et de réponse aux menaces. Les outils d’analyse de sécurité IoT sont devenus des composants essentiels pour faire face à ces défis, exploitant des techniques d’apprentissage automatique avancées pour identifier des modèles de comportement inhabituels et des menaces potentielles au sein des réseaux IoT. Cet article explore le rôle essentiel que jouent les outils d’analyse de sécurité IoT pour améliorer la sécurité IoT.

  • The sheer number of devices connected to a single network, each of which may have different security protocols.
  • The diversity of communication protocols and data formats used by IoT devices.
  • The complexity of the underlying infrastructure, which may include multiple layers of networks, cloud services, and mobile applications.

These complexities make it difficult for traditional security solutions to identify and respond to potential threats in real-time. This is where IoT Security Analytics Tools come into play.

The Role of IoT Security Analytics Tools

IoT Security Analytics Tools are designed to detect and respond to potential threats in real-time. These tools leverage advanced machine learning techniques to identify unusual behavior patterns and potential threats within IoT networks. They can detect anomalies in device communication, identify malicious activities, and alert administrators to potential threats. Additionally, they can provide detailed insights into the security posture of an IoT network, enabling administrators to take proactive measures to mitigate risks.

IoT Security Analytics Tools can also be used to monitor user activity on connected devices. This helps administrators identify suspicious activities and take appropriate action. Furthermore, these tools can be used to detect and respond to data breaches, helping organizations protect their sensitive data from unauthorized access.

Conclusion

IoT Security Analytics Tools are essential components for enhancing the security of IoT networks. These tools leverage advanced machine learning techniques to identify unusual behavior patterns and potential threats in real-time. They can also be used to monitor user activity on connected devices, detect data breaches, and provide detailed insights into the security posture of an IoT network. As such, these tools are invaluable for ensuring the security of IoT environments.

La complexité de la sécurité IoT

La sécurisation des environnements IoT présente des défis distincts :

  • Le nombre élevé de périphériques connectés à un seul réseau, chacun pouvant avoir des protocoles de sécurité différents.
  • La diversité des protocoles de communication et des formats de données utilisés par les périphériques IoT.
  • La complexité de l’infrastructure sous-jacente, qui peut inclure plusieurs couches de réseaux, de services cloud et d’applications mobiles.

Ces complexités rendent difficile pour les solutions de sécurité traditionnelles d’identifier et de réagir aux menaces potentielles en temps réel. C’est là que les outils d’analyse de sécurité IoT entrent en jeu.

Le rôle des outils d’analyse de sécurité IoT

Les outils d’analyse de sécurité IoT sont conçus pour détecter et réagir aux menaces potentielles en temps réel. Ces outils utilisent des techniques d’apprentissage automatique avancées pour identifier des modèles de comportement inhabituels et des menaces potentielles dans les réseaux IoT. Ils peuvent détecter des anomalies dans la communication des périphériques, identifier des activités malveillantes et alerter les administrateurs des menaces potentielles. De plus, ils peuvent fournir des informations détaillées sur la posture de sécurité d’un réseau IoT, permettant aux administrateurs de prendre des mesures proactives pour atténuer les risques.

Les outils d’analyse de sécurité IoT peuvent également être utilisés pour surveiller l’activité des utilisateurs sur les périphériques connectés. Cela aide les administrateurs à identifier les activités suspectes et à prendre les mesures appropriées. De plus, ces outils peuvent être utilisés pour détecter et réagir aux violations de données, aid
Source de l’article sur DZONE

Kubernetes : l'état des lieux

Kubernetes est un système open source qui permet de gérer des clusters de conteneurs. Découvrez l’état des lieux de ce puissant outil !

Rapport de tendance 2023 sur Kubernetes dans l’entreprise de DZone

Selon le rapport sur les tendances Kubernetes dans l’entreprise de DZone de 2023, Kubernetes est un véritable révolutionnaire dans le domaine du développement d’applications modernes. Il a révolutionné la manière dont nous gérons les applications conteneurisées. Certaines personnes ont tendance à penser que Kubernetes est une approche opposée au serveur sans état. Cela est probablement dû à la gestion liée au déploiement d’applications sur Kubernetes – la gestion des nœuds, la configuration des services, la gestion de charge, etc. La programmation sans serveur, célébrée pour sa puissance d’autoscaling et son efficacité économique, est connue pour son développement et son exploitation faciles des applications. Pourtant, les complexités introduites par Kubernetes ont conduit à une quête d’une approche plus automatisée – c’est précisément là que la programmation sans serveur entre en jeu dans Kubernetes.

Afin de tirer parti des avantages de la programmation sans serveur et de Kubernetes, les entreprises doivent trouver un moyen de combiner ces deux technologies. Les entreprises peuvent maintenant utiliser des outils tels que Knative pour combiner le meilleur des deux mondes. Knative est une plate-forme open source qui permet aux développeurs de créer et de déployer des applications sans serveur sur Kubernetes. En outre, Knative fournit des fonctionnalités telles que le routage intelligent, la scalabilité automatique et la gestion des données qui aident les développeurs à tirer le meilleur parti de Kubernetes. Les entreprises peuvent également utiliser des outils tels que Kubeless pour exécuter des fonctions sans serveur sur Kubernetes. Kubeless est un moteur de fonction sans serveur qui permet aux développeurs d’exécuter des fonctions sans serveur sur Kubernetes avec une faible latence et une grande scalabilité. Les entreprises peuvent également utiliser des outils tels que OpenFaaS pour créer des services sans serveur sur Kubernetes.

En combinant les avantages de la programmation sans serveur et de Kubernetes, les entreprises peuvent bénéficier d’une gestion plus efficace des données et d’une meilleure scalabilité. Les outils tels que Knative, Kubeless et OpenFaaS permettent aux entreprises de tirer parti des avantages de la programmation sans serveur et de Kubernetes pour gérer leurs applications et leurs données. Ces outils offrent aux entreprises une plus grande flexibilité et une meilleure gestion des données, ce qui permet aux entreprises de réduire leurs coûts et d’améliorer leurs performances. En utilisant ces outils, les entreprises peuvent gérer leurs applications et leurs données plus efficacement et à moindre coût.

En conclusion, la combinaison de la programmation sans serveur et de Kubernetes offre aux entreprises une plus grande flexibilité et une meilleure gestion des données. Les outils tels que Knative, Kubeless et OpenFaaS permettent aux entreprises de tirer parti des avantages de ces technologies pour gérer leurs applications et leurs données plus efficacement et à moindre coût. Les entreprises peuvent ainsi réduire leurs coûts et améliorer leurs performances en matière de gestion des données.

Source de l’article sur DZONE

Former des données avec ChatGPT : Guide pour développeurs

Apprenez à former des données avec ChatGPT et découvrez comment les développeurs peuvent tirer le meilleur parti de cette technologie puissante !

## Le lancement de ChatGPT par OpenAI a été transformateur pour l’intelligence conversationnelle AI. Impressionnant hors de la boîte, les capacités de ChatGPT sont intrinsèquement limitées par ses données d’entraînement fixes de 2021. Pour les développeurs de logiciels et les entreprises technologiques, l’entraînement de ChatGPT sur des jeux de données personnalisés est essentiel pour créer des assistants IA personnalisés qui évoluent avec votre entreprise.

Dans ce guide complet, nous explorerons les meilleures pratiques pour les équipes de logiciels afin de former des modèles ChatGPT personnalisés à l’aide de techniques telles que le réglage fin et la lecture interactive MEMWALKER.

Testing is a critical part of training ChatGPT models. It’s important to evaluate the performance of your model against a test dataset to ensure that it’s accurately predicting the desired output. Testing also helps identify any potential issues with the model, such as overfitting or underfitting. To get the most out of testing, it’s important to use a variety of metrics, such as accuracy, precision, recall, and F1 score.

Le lancement de ChatGPT par OpenAI a été transformateur pour l’intelligence conversationnelle IA. Impressionnant à l’état brut, les capacités de ChatGPT sont intrinsèquement limitées par ses données d’entraînement fixes de 2021. Pour les développeurs de logiciels et les entreprises technologiques, l’entraînement de ChatGPT sur des ensembles de données personnalisés est essentiel pour créer des assistants IA adaptés à votre entreprise.

Dans ce guide complet, nous explorerons les meilleures pratiques pour les équipes de logiciels afin de former des modèles ChatGPT personnalisés à l’aide de techniques telles que le réglage fin et la lecture interactive MEMWALKER.

Le test est une étape essentielle de l’entraînement des modèles ChatGPT. Il est important d’évaluer les performances de votre modèle sur un jeu de données de test pour s’assurer qu’il prédit correctement la sortie souhaitée. Les tests permettent également d’identifier tout problème potentiel avec le modèle, tel que le surapprentissage ou le sous-apprentissage. Pour tirer le meilleur parti des tests, il est important d’utiliser une variété de métriques, telles que la précision, la précision, le rappel et le score F1.

Source de l’article sur DZONE

Augmenter la sécurité AD avec MFA en local.

Augmenter la sécurité des réseaux locaux avec l’authentification à deux facteurs (MFA) est une solution efficace pour protéger les données sensibles. Découvrez comment mettre en place cette solution sur votre Active Directory !

Dans l’ère numérique d’aujourd’hui, le pilier de l’infrastructure informatique de toute organisation est son annuaire Active Directory (AD). Ce service d’annuaire centralisé gère l’authentification et l’autorisation, ce qui le rend essentiel pour protéger les données sensibles et maintenir l’intégrité du système.

To further enhance security, organizations are increasingly turning to database security best practices. This includes implementing robust access control measures, encrypting data, and regularly auditing and monitoring databases for suspicious activity.

Dans l’ère numérique d’aujourd’hui, le pilier de l’infrastructure informatique de toute organisation est son Active Directory (AD). Ce service de répertoire centralisé gère l’authentification et l’autorisation, ce qui est essentiel pour protéger les données sensibles et maintenir l’intégrité du système.

Cependant, à mesure que le paysage technologique évolue, les méthodes employées par les cybercriminels pour contourner les mesures de sécurité évoluent également. C’est là que l’authentification à facteurs multiples (MFA) entre en jeu, se présentant comme une défense redoutable contre l’accès non autorisé et les violations de données.

Pour renforcer davantage la sécurité, les organisations se tournent de plus en plus vers les meilleures pratiques de sécurité des bases de données. Cela inclut la mise en œuvre de mesures de contrôle d’accès robustes, le chiffrement des données et l’audit et le suivi réguliers des bases de données pour détecter toute activité suspecte.

Source de l’article sur DZONE

Construire des architectures analytiques pour alimenter des applications temps réel

Construire des architectures analytiques pour alimenter des applications temps réel est une tâche complexe qui nécessite une planification minutieuse et une mise en œuvre rigoureuse.

Comprendre le rôle des analyses hors ligne

Testing the Efficiency of Offline Analytics

In order to ensure that an offline analytics architecture is efficient and cost-effective, it’s important to test its performance and scalability. This can be done by running a series of tests that measure the time it takes to process a given dataset, as well as the accuracy of the results. These tests should be conducted on a regular basis to ensure that the architecture is able to handle the increasing volume and complexity of data. Additionally, it’s important to test the architecture’s ability to integrate with existing systems and applications, as well as its ability to scale up or down as needed.

Conclusion

Offline analytics architectures are essential for preparing and enhancing data before it’s ready for real-time application. Testing the efficiency and scalability of such architectures is key to ensuring that they can handle the increasing volume and complexity of data. By running regular tests and monitoring the performance of the architecture, businesses can ensure that their data is ready for real-time insights and applications.

Comprendre le rôle des analyses hors ligne

Les analyses hors ligne impliquent le processus de collecte, de traitement et d’analyse de grands volumes de données de manière par lots, souvent sur des périodes plus longues. Cela contraste avec les analyses en temps réel, qui se concentrent sur l’analyse des données lorsqu’elles sont générées, avec des résultats immédiats. Bien que les analyses en temps réel offrent l’avantage d’une prise de conscience rapide, les analyses hors ligne fournissent la base sur laquelle ces informations sont construites. Les architectures d’analyse hors ligne sont conçues pour gérer des jeux de données volumineux, nettoyer et transformer les données et générer des résultats agrégés qui peuvent ensuite être exploités dans des applications en temps réel.

Tester l’efficacité des analyses hors ligne

Pour s’assurer que les architectures d’analyse hors ligne sont efficaces et rentables, il est important de tester leurs performances et leur évolutivité. Cela peut être fait en exécutant une série de tests qui mesurent le temps nécessaire pour traiter un jeu de données donné, ainsi que la précision des résultats. Ces tests doivent être effectués régulièrement pour s’assurer que l’architecture est capable de gérer le volume et la complexité croissants des données. De plus, il est important de tester la capacité de l’architecture à s’intégrer aux systèmes et applications existants, ainsi qu’à son aptitude à évoluer vers le haut ou vers le bas selon les besoins.

Conclusion

Les architectures d’analyse hors ligne sont essentielles pour préparer et améliorer les données avant qu’elles ne soient prêtes pour une application en temps réel. Tester l’efficacité et la scalabilité de ces architectures est essentiel pour s’assurer qu’elles peuvent gérer le volume et la complexité croissants des données. En exécutant des tests réguliers et en surveillant les performances de l’architecture, les entreprises peuvent s’assurer que leurs données sont prêtes pour des informations et des applications en temps réel.

Source de l’article sur DZONE

Optimisation des lignes d'objet d'email et mobile avec AI et ML

Les entreprises peuvent désormais optimiser leurs lignes d’objet d’email et mobile grâce à l’intelligence artificielle et au machine learning. Une nouvelle ère de marketing commence !

Méthodologie

Architecture

La ligne d’objet et les titres des e-mails et des notifications push jouent un rôle important dans la détermination des taux d’engagement. La communication numérique nécessite la compétence de la conception de lignes d’objet convaincantes et de titres de notifications push concis qui captent l’attention de l’utilisateur. Les marketeurs conçoivent des lignes d’objet en fonction du ton du message à transmettre et du public cible visé. En «enseignant» efficacement cette compétence et en l’optimisant pour la communication numérique, les modèles d’IA générative offrent une avenue passionnante pour automatiser ce processus. L’article examine quelques approches pour créer des lignes d’objet et des titres de notifications push efficaces tout en les combinant avec des modèles classiques d’apprentissage automatique pour prédire les taux d’ouverture avec l’IA générative (Large Language Models).

Il ne s’agit pas seulement de créer des lignes d’objet accrocheuses que les LLM peuvent facilement générer avec le bon déclencheur. L’objectif est de générer un candidat idéal pour le contexte et le contenu qui incitera le destinataire à cliquer et à afficher le message. Les modèles d’apprentissage machine (ML), en particulier les algorithmes de forêt aléatoire, peuvent prédire avec une grande confiance la probabilité qu’un destinataire clique sur un message s’ils sont correctement formés. En combinant les LLM avec des modèles ML prédictifs, il est possible de générer des lignes d’objet et des titres de notifications push de haute qualité. Voici quelques moyens possibles.

La première approche consiste à entraîner un modèle ML prédictif sur un jeu de données historiques. Le modèle apprend à prédire le taux d’ouverture en fonction des caractéristiques telles que le sujet, le contenu et le public cible. Une fois le modèle formé, il peut être utilisé pour générer des lignes d’objet et des titres de notifications push optimaux pour chaque message. La seconde approche consiste à entraîner un modèle ML prédictif sur un jeu de données historiques tout en utilisant un modèle LLM pour générer des lignes d’objet et des titres de notifications push. Le modèle ML apprend à prédire le taux d’ouverture en fonction des caractéristiques telles que le sujet, le contenu et le public cible, tandis que le modèle LLM génère des lignes d’objet et des titres de notifications push optimaux pour chaque message. Enfin, la troisième approche consiste à entraîner un modèle ML prédictif sur un jeu de données historiques tout en utilisant un modèle LLM pour générer des lignes d’objet et des titres de notifications push optimaux pour chaque message. Le modèle ML apprend à prédire le taux d’ouverture en fonction des caractéristiques telles que le sujet, le contenu et le public cible, tandis que le modèle LLM génère des lignes d’objet et des titres de notifications

Source de l’article sur DZONE

Apprentissage profond en reconnaissance d'images: Techniques et défis

L’apprentissage profond en reconnaissance d’images est une technologie puissante qui permet de résoudre des problèmes complexes. Découvrez les techniques et les défis associés à cette technologie.

Dans le vaste royaume de l’intelligence artificielle, l’apprentissage profond est devenu un jeu-changer, en particulier dans le domaine de la reconnaissance d’images. La capacité des machines à reconnaître et à catégoriser des images, à la manière du cerveau humain, a ouvert une multitude d’opportunités et de défis. Plongeons-nous dans les techniques que l’apprentissage profond offre pour la reconnaissance d’images et les obstacles qui y sont associés.

Data: For CNNs to work, large amounts of data are required. The more data that is available, the more accurate the results will be. This is because the network needs to be trained on a variety of images, so it can learn to recognize patterns and distinguish between different objects.

Hurdles: The main challenge with CNNs is that they require a lot of data and computing power. This can be expensive and time-consuming, and it can also lead to overfitting if not enough data is available. Additionally, CNNs are not able to generalize well, meaning they are not able to recognize objects that they have not been trained on.

Réseaux de neurones convolutionnels (CNN)

Technique : Les CNN sont le pilier des systèmes de reconnaissance d’images modernes. Ils se composent de plusieurs couches de petites collections de neurones qui traitent des parties de l’image d’entrée, appelées champs réceptifs. Les résultats de ces collections sont ensuite assemblés de manière à se chevaucher, afin d’obtenir une meilleure représentation de l’image d’origine ; c’est une caractéristique distinctive des CNN.

Données : Pour que les CNN fonctionnent, des quantités importantes de données sont nécessaires. Plus il y a de données disponibles, plus les résultats seront précis. C’est parce que le réseau doit être formé sur une variété d’images, afin qu’il puisse apprendre à reconnaître des modèles et à distinguer différents objets.

Hurdles : Le principal défi avec les CNN est qu’ils nécessitent beaucoup de données et de puissance de calcul. Cela peut être coûteux et prendre du temps, et cela peut également entraîner un surajustement si pas assez de données sont disponibles. De plus, les CNN ne sont pas en mesure de généraliser bien, ce qui signifie qu’ils ne sont pas en mesure de reconnaître des objets qu’ils n’ont pas été formés.

Réseaux neuronaux profonds (DNN)

Technique : Les DNN sont une variante des CNN qui peuvent être utilisés pour la reconnaissance d’images. Ils sont constitués de plusieurs couches de neurones qui traitent des parties de l’image d’entrée et produisent des résultats plus précis que les CNN. Les DNN peuvent également être utilisés pour la classification d’images et la segmentation d’images.

Données : Les DNN nécessitent également des grandes quantités de données pour fonctionner correctement. Cependant, ils peuvent être entraînés sur des jeux de données plus petits que les CNN et peuvent donc être plus efficaces lorsqu’il n’y a pas assez de données disponibles.

Hurdles : Le principal défi avec les DNN est qu’ils nécessitent beaucoup de temps et de puissance de calcul pour être entraînés correctement. De plus, ils sont sensibles aux bruit et aux variations dans les données d’entrée, ce qui peut entraîner des résultats imprécis.

Source de l’article sur DZONE

Créer des définitions de ressources clients sur Kubernetes

Créer des définitions de ressources clients sur Kubernetes est une tâche importante pour garantir le bon fonctionnement de votre application. Découvrez comment le faire facilement!

## Kubernetes Custom Resource Definitions (CRDs) : Un tutoriel

First, you’ll need to define the custom resource. This is done using the Kubernetes API, which is a declarative way of defining objects. You’ll need to provide the name of the resource, its fields, and any validation rules you want to apply. Once you’ve defined the resource, you can create instances of it using the Kubernetes API.

Next, you’ll need to create a controller for the CRD. This is a piece of code that will watch for changes to the custom resource and take action accordingly. For example, if you create a new instance of the resource, the controller could create a new pod or service based on the data in the resource. The controller can also be used to update existing resources when their data changes.

Finally, you’ll need to deploy the controller. This is done using the Kubernetes API, and it will allow the controller to start watching for changes to the custom resource. Once deployed, the controller will be able to take action based on changes to the custom resource.

Kubernetes est une plateforme open-source populaire utilisée pour automatiser le déploiement, le dimensionnement et la gestion des applications conteneurisées. Il fournit une puissante API pour gérer les ressources, mais parfois ses ressources intégrées ne sont pas suffisantes pour votre cas d’utilisation. C’est là que les définitions de ressources personnalisées (CRD) de Kubernetes entrent en jeu. Les CRD vous permettent de définir vos propres ressources personnalisées, qui peuvent être gérées de la même manière que les ressources intégrées telles que les pods et les services.

Dans ce tutoriel, nous allons passer en revue les étapes pour mettre en œuvre une CRD Kubernetes.

Tout d’abord, vous devrez définir la ressource personnalisée. Cela se fait à l’aide de l’API Kubernetes, qui est une manière déclarative de définir des objets. Vous devrez fournir le nom de la ressource, ses champs et toutes les règles de validation que vous souhaitez appliquer. Une fois la ressource définie, vous pouvez créer des instances de celle-ci à l’aide de l’API Kubernetes.

Ensuite, vous devrez créer un contrôleur pour la CRD. Il s’agit d’un morceau de code qui surveillera les modifications apportées à la ressource personnalisée et agira en conséquence. Par exemple, si vous créez une nouvelle instance de la ressource, le contrôleur peut créer un nouveau pod ou un nouveau service en fonction des données de la ressource. Le contrôleur peut également être utilisé pour mettre à jour les ressources existantes lorsque leurs données changent.

Enfin, vous devrez déployer le contrôleur. Cela se fait à l’aide de l’API Kubernetes et permettra au contrôleur de commencer à surveiller les modifications apportées à la ressource personnalisée. Une fois déployé, le contrôleur sera en mesure d’agir en fonction des modifications apportées à la ressource personnalisée.

Les CRD Kubernetes offrent une grande flexibilité et permettent aux développeurs d’utiliser des données personnalisées pour gérer leurs applications sur Kubernetes. Les CRD peuvent être utilisés pour créer des objets personnalisés tels que des bases de données, des services réseau ou des services d’analyse. Les contrôleurs associés

Source de l’article sur DZONE