Articles

Conception de microservices pour l'IA

La conception de microservices pour l’IA est une tâche complexe qui nécessite une compréhension approfondie des principes de l’intelligence artificielle et des technologies modernes.

2. Event-driven Architecture

The event-driven architecture pattern is based on the concept of an event-driven system, where events are generated by components and handled by other components. In AI microservices, events are triggered by changes in data or model parameters, and the corresponding services are notified to take appropriate actions. This pattern is useful for real-time applications such as autonomous vehicles, where the system must respond quickly to changing conditions.

3. Containerization

Containerization is a key component of AI microservices, allowing for the deployment of multiple services in a single environment. This pattern enables the efficient packaging and deployment of AI models, making it easier to scale and manage them. Additionally, containers provide an isolated environment for each service, ensuring that any changes made to one service do not affect the others.

Conclusion

The integration of AI into microservices architecture is becoming increasingly important in today’s software landscape. The 10 design patterns discussed in this article are essential for developing efficient, robust, and scalable AI solutions. By leveraging these patterns, developers can create powerful AI applications that are modular, scalable, and flexible.

1. Modèle en tant que service (MaaS)

MaaS considère chaque modèle d’intelligence artificielle (IA) comme un service autonome. En exposant les fonctionnalités d’IA via des API REST ou gRPC, MaaS permet un redimensionnement et une mise à jour indépendants des modèles. Ce modèle est particulièrement avantageux pour gérer plusieurs modèles d’IA, permettant une intégration et une déploiement continus sans perturber l’ensemble du système.

2. Architecture orientée événement

Le modèle d’architecture orientée événement est basé sur le concept d’un système orienté événement, où les événements sont générés par des composants et traités par d’autres composants. Dans les microservices d’IA, les événements sont déclenchés par des changements de données ou de paramètres de modèle, et les services correspondants sont notifiés pour prendre les actions appropriées. Ce modèle est utile pour les applications en temps réel telles que les véhicules autonomes, où le système doit réagir rapidement aux conditions changeantes.

3. Conteneurisation

La conteneurisation est un composant clé des microservices d’IA, permettant le déploiement de plusieurs services dans un seul environnement. Ce modèle permet l’empaquetage et le déploiement efficaces des modèles d’IA, facilitant leur mise à l’échelle et leur gestion. De plus, les conteneurs fournissent un environnement isolé pour chaque service, ce qui garantit que tout changement apporté à un service n’affecte pas les autres.

Conclusion

L’intégration de l’IA dans l’architecture des microservices devient de plus en plus importante dans le paysage logiciel actuel. Les 10 modèles de conception discutés dans cet article sont essentiels pour développer des solutions d’IA efficaces, robustes et évolutives. En exploitant ces modèles, les développeurs peuvent créer des applications d’IA puissantes qui sont modulaires, évolutives et flexibles.

Source de l’article sur DZONE

Chorégraphie de modèles : optimiser la communication en systèmes distribués.

La chorégraphie de modèles est un outil puissant pour optimiser la communication en systèmes distribués. Elle permet de coordonner et de gérer les interactions entre les différents acteurs.

Dans le paysage technologique en constante évolution d’aujourd’hui, il est commun que les applications migrent vers le cloud pour embrasser l’architecture des microservices.

Logiciel Chorégraphie

La chorégraphie est une méthodologie qui se concentre sur l’interaction entre les services sans l’utilisation d’un orchestrateur central. Au lieu de cela, chaque service est responsable de la communication avec les autres services. Les services peuvent communiquer directement entre eux ou via un bus de messages. La chorégraphie est une méthode très populaire pour gérer la communication entre les microservices car elle offre une plus grande flexibilité et une plus grande scalabilité que l’orchestration. Il est également plus facile à mettre en œuvre et à maintenir.

Avantages et inconvénients de la chorégraphie

Bien que la chorégraphie offre une plus grande flexibilité et une plus grande scalabilité, elle présente également certaines limitations. Par exemple, le développement et le déploiement des services peuvent être plus difficiles car ils doivent être conçus pour fonctionner ensemble. De plus, il est plus difficile de déboguer et de maintenir des applications basées sur la chorégraphie car il n’y a pas d’orchestrateur central pour surveiller le flux de messages entre les services. Enfin, la chorégraphie peut être plus difficile à mettre en œuvre dans des environnements distribués car elle nécessite une coordination stricte entre les services.

Conclusion

La chorégraphie est une méthodologie très populaire pour gérer la communication entre les microservices. Il offre une plus grande flexibilité et une plus grande scalabilité que l’orchestration, mais il présente également certaines limitations. Il est plus difficile à développer et à déployer, à déboguer et à maintenir, et peut être plus difficile à mettre en œuvre dans des environnements distribués. Cependant, dans certains cas, la chorégraphie peut être la meilleure solution pour gérer la communication entre les microservices. Il est important de comprendre les nuances et les avantages et les inconvénients de cette méthodologie avant de choisir le bon logiciel pour votre application.

Logiciel Chorégraphie

La chorégraphie est une méthodologie qui se concentre sur l’interaction entre les services sans l’utilisation d’un orchestrateur central. Au lieu de cela, chaque service est responsable de la communication avec les autres services. Les services peuvent communiquer directement entre eux ou via un bus de messages. La chorégraphie est une méthode très populaire pour gérer la communication entre les microservices car elle offre une plus grande flexibilité et une plus grande scalabilité que l’orchestration. Il est également plus facile à mettre en œuvre et à maintenir.

Avantages du logiciel Chorégraphie

La chorégraphie offre une variété d’avantages par rapport à l’orchestration. Tout d’abord, elle permet aux services de communiquer directement entre eux sans avoir à passer par un orchestrateur central. Cela signifie que chaque service peut fonctionner indépendamment des autres, ce qui permet une plus grande flexibilité et une plus grande scalabilité. De plus, la chorégraphie est plus facile à mettre en œuvre et à maintenir car il n’y a pas d’or

Source de l’article sur DZONE

Architecture TDD pour Services

Web

L’architecture TDD pour les services web est une méthode de développement qui permet de construire des applications robustes et fiables. Elle offre une grande flexibilité et des tests automatisés.

Au-delà des tests unitaires

It doesn’t have to be this way. By leveraging the same TDD techniques used for unit tests, developers can create tests that span services and data stores, while still providing the same level of confidence and quality. Such tests can be written in the same language as the codebase, using the same tools, and can be managed as part of the same process. This approach also provides a more complete view of the system under test, allowing for more comprehensive testing, earlier detection of errors, and a better overall development process.

Au-delà du test unitaire

Le développement piloté par les tests (TDD) est une technique bien reconnue pour améliorer le processus de développement, que ce soit pour le développement de nouveau code ou pour la correction de bogues. Tout d’abord, écrivez un test qui échoue, puis faites-le fonctionner de manière minimale, puis faites-le fonctionner correctement ; rincez et répétez. Ce processus maintient l’accent sur le travail à valeur ajoutée et tire parti du processus de test comme un défi pour améliorer la conception testée plutôt que de vérifier uniquement son comportement. Cela améliore également la qualité de vos tests, qui deviennent une partie plus précieuse du processus global plutôt qu’une pensée après coup.

Le discours commun sur le TDD tourne autour des unités relativement petites et en cours de traitement, souvent d’une seule classe. Cela fonctionne très bien, mais qu’en est-il des unités «livrables» plus importantes ? Lors de l’écriture d’un microservice, ce sont les services qui sont primordiaux, tandis que les différentes constructions d’implémentation sont simplement des outils pour atteindre cet objectif. Le test des services est souvent considéré comme étant hors du champ d’un développeur travaillant dans une seule base de code. Ces tests sont souvent gérés séparément, peut-être par une équipe distincte, à l’aide d’outils et de langages différents. Cela rend souvent ces tests opaques et de moins bonne qualité et ajoute des inefficacités en nécessitant un commit/deploy ainsi qu’une coordination avec une équipe distincte.

Cela n’a pas à être ainsi. En utilisant les mêmes techniques TDD utilisées pour les tests unitaires, les développeurs peuvent créer des tests qui couvrent les services et les magasins de données, tout en fournissant le même niveau de confiance et de qualité. Ces tests peuvent être écrits dans le même langage que la base de code, à l’aide des mêmes outils, et peuvent être gérés dans le cadre du même processus. Cette approche fournit également une vue plus complète du système sous test, permettant un test plus complet, une détection plus précoce des erreurs et un meilleur processus de développement global.

Source de l’article sur DZONE

Spring Cloud: Comment Gérer Config. Microservices (2e Partie)

Dans cet article, nous allons poursuivre notre exploration de Spring Cloud et voir comment gérer la configuration des microservices. Préparez-vous à découvrir les dernières fonctionnalités de Spring Cloud !

Dans la première partie de cet article, nous avons vu comment configurer un scénario simple avec un serveur Spring Cloud Config et son client correspondant. Le serveur était configuré avec un profil natif et la configuration était stockée dans le classpath, dans un sous-dossier nommé config. La démo était composée d’une seule instance de serveur et de client.

Dans la deuxième partie, nous allons montrer comment configurer Spring Cloud Config pour se connecter et utiliser un dépôt Git externe. Puis, dans les prochaines sections, nous parlerons du rafraîchissement des données de configuration sans redémarrage des services.

## Configurer Spring Cloud Config pour se connecter à un dépôt Git externe

En tant qu’informaticien enthousiaste, je suis très intéressé par les nouvelles technologies et leurs applications. Dans cet article, je vais vous parler de l’utilisation d’un logiciel de configuration de Spring Cloud Config pour gérer les paramètres de votre application.

Tout d’abord, nous allons voir comment configurer un scénario simple avec un serveur Spring Cloud Config et son client correspondant. Le serveur est configuré avec un profil natif et la configuration est stockée dans le classpath, dans un sous-dossier nommé config. La démo est constituée d’une seule instance de serveur et de client.

Ensuite, nous verrons comment configurer Spring Cloud Config pour se connecter et utiliser un dépôt Git externe. Dans les sections suivantes, nous parlerons du rafraîchissement des données de configuration sans redémarrer les services. Pour ce faire, nous utiliserons le logiciel Spring Cloud Bus qui permet de publier des messages sur un bus de messages et de les diffuser à tous les clients connectés. Nous verrons également comment configurer le client pour qu’il puisse recevoir et traiter ces messages.

Enfin, nous verrons comment le logiciel Spring Cloud Config peut être utilisé pour gérer les paramètres de votre application. Nous verrons comment le serveur peut être configuré pour lire la configuration à partir d’une source externe, comme un dépôt Git, et comment le client peut être configuré pour récupérer la configuration à partir du serveur. Nous verrons également comment le logiciel peut être utilisé pour mettre à jour la configuration sans redémarrer les services.

Source de l’article sur DZONE

Microservices today are often deployed on a platform such as Kubernetes, which orchestrates the deployment and management of containerized applications. Microservices, however, don’t exist in a vacuum. They typically communicate with other services, such as databases, message brokers, or other microservices. Therefore, an application usually consists of multiple services that form a complete solution.

But, as a developer, how do you develop and test an individual microservice that is part of a larger system? This article examines some common inner-loop development cycle challenges and shows how Quarkus and other technologies help solve some of these challenges.

Source de l’article sur DZONE

On paper, microservices sound wonderful. They are modular, scalable, and fault tolerant. A lot of companies have had great success using this model, so microservices might naturally seem to be the superior architecture and the best way to start new applications.

However, most firms that have succeeded with microservices did not begin with them. Consider the examples of Airbnb and Twitter, which went the microservice route after outgrowing their monoliths and are now battling its complexities. Even successful companies that use microservices appear to still be figuring out the best way to make them work. It is evident that microservices come with their share of tradeoffs.

Source de l’article sur DZONE

Imagine a microservice application consisting of dozens of continuously-deployed autonomous services. Each of the application’s constellation of services has its own repository, with a different versioning scheme and a different team continually shipping new versions.

Riddle me this: How can I tell the (whole) application’s version? Being that the change history is scattered among dozens of repositories, what’s the most efficient approach to keeping track of changes? And how do we manage application releases?

Source de l’article sur DZONE

For decades, developers have struggled with optimizing persistence layer implementation in terms of storing business data, retrieving relevant data quickly, and — most importantly — simplifying data transaction logic regardless of programming languages.

Fortunately, this challenge triggered the invention of Java ecosystems in which developers can implement the Java Persistence API (JPA). For instance, Hibernate Object-Relational Mapper (ORM) with Panache is the standard framework for JPA implementation in the Java ecosystem.

Source de l’article sur DZONE

When we build a microservice architecture and the number of services keeps growing, we face the problem of debugging and tracing requests through our entire system. What happened when a user got a 500 error on his request? What service incorrectly processed his request? All these questions can be solved by the Distributed Tracing System. Let’s take Spring Cloud Sleuth as an example.

How Spring Cloud Sleuth Works

To trace a request through a distributed system, the concepts TraceID and SpanID are introduced. TraceID is generated when a request enters our system and remains unchanged throughout its path. SpanID changes as the request passes from one service to another. If necessary, it is possible to generate new spans within one service to distinguish business processes.

Source de l’article sur DZONE