Articles

Conception de microservices pour l'IA

La conception de microservices pour l’IA est une tâche complexe qui nécessite une compréhension approfondie des principes de l’intelligence artificielle et des technologies modernes.

2. Event-driven Architecture

The event-driven architecture pattern is based on the concept of an event-driven system, where events are generated by components and handled by other components. In AI microservices, events are triggered by changes in data or model parameters, and the corresponding services are notified to take appropriate actions. This pattern is useful for real-time applications such as autonomous vehicles, where the system must respond quickly to changing conditions.

3. Containerization

Containerization is a key component of AI microservices, allowing for the deployment of multiple services in a single environment. This pattern enables the efficient packaging and deployment of AI models, making it easier to scale and manage them. Additionally, containers provide an isolated environment for each service, ensuring that any changes made to one service do not affect the others.

Conclusion

The integration of AI into microservices architecture is becoming increasingly important in today’s software landscape. The 10 design patterns discussed in this article are essential for developing efficient, robust, and scalable AI solutions. By leveraging these patterns, developers can create powerful AI applications that are modular, scalable, and flexible.

1. Modèle en tant que service (MaaS)

MaaS considère chaque modèle d’intelligence artificielle (IA) comme un service autonome. En exposant les fonctionnalités d’IA via des API REST ou gRPC, MaaS permet un redimensionnement et une mise à jour indépendants des modèles. Ce modèle est particulièrement avantageux pour gérer plusieurs modèles d’IA, permettant une intégration et une déploiement continus sans perturber l’ensemble du système.

2. Architecture orientée événement

Le modèle d’architecture orientée événement est basé sur le concept d’un système orienté événement, où les événements sont générés par des composants et traités par d’autres composants. Dans les microservices d’IA, les événements sont déclenchés par des changements de données ou de paramètres de modèle, et les services correspondants sont notifiés pour prendre les actions appropriées. Ce modèle est utile pour les applications en temps réel telles que les véhicules autonomes, où le système doit réagir rapidement aux conditions changeantes.

3. Conteneurisation

La conteneurisation est un composant clé des microservices d’IA, permettant le déploiement de plusieurs services dans un seul environnement. Ce modèle permet l’empaquetage et le déploiement efficaces des modèles d’IA, facilitant leur mise à l’échelle et leur gestion. De plus, les conteneurs fournissent un environnement isolé pour chaque service, ce qui garantit que tout changement apporté à un service n’affecte pas les autres.

Conclusion

L’intégration de l’IA dans l’architecture des microservices devient de plus en plus importante dans le paysage logiciel actuel. Les 10 modèles de conception discutés dans cet article sont essentiels pour développer des solutions d’IA efficaces, robustes et évolutives. En exploitant ces modèles, les développeurs peuvent créer des applications d’IA puissantes qui sont modulaires, évolutives et flexibles.

Source de l’article sur DZONE

Stratégies LLM pour les gestionnaires de produits

Les gestionnaires de produits doivent adopter des stratégies de gestion de la vie des produits (LLM) pour garantir le succès à long terme de leurs produits.

Embarquer dans l’excitante aventure de faire passer un produit de l’idée à sa mise sur le marché nécessite une planification et un storytelling minutieux. Les responsables produits jouent un rôle crucial dans la définition et la gestion du succès d’un produit. De l’idée à sa mise sur le marché, les responsables produits doivent naviguer à travers divers défis et prendre des décisions stratégiques. En tant que responsable produit, créer des récits et des stratégies convaincants est essentiel au succès. Alors que le LLM bouleverse le marché, les PM peuvent utiliser les LLM pour construire des stratégies efficaces à chaque étape du cycle de vie du produit afin d’améliorer leur productivité.

L’architecture d’un produit est un voyage passionnant qui commence par une idée et se termine par son lancement sur le marché. Les chefs de produit jouent un rôle crucial dans la définition et la réussite d’un produit. De la conception de l’idée à son lancement sur le marché, les chefs de produit doivent relever de nombreux défis et prendre des décisions stratégiques. En tant que chef de produit, il est essentiel de créer des récits et des stratégies convaincants pour réussir. Avec l’arrivée des modèles d’apprentissage automatique, les chefs de produit peuvent utiliser ces outils pour construire des stratégies efficaces à chaque étape du cycle de vie du produit et améliorer leur productivité.

Cet article vise à identifier le cycle de vie d’une idée à son lancement sur le marché et à montrer comment nous pouvons utiliser l’ingénierie prompte pour interroger un modèle d’apprentissage automatique et augmenter la productivité en tant que chef de produit.

L’architecture d’un produit est un processus complexe qui nécessite une planification et une gestion minutieuses. Les chefs de produit doivent être en mesure de comprendre les différentes phases du cycle de vie du produit et de prendre des décisions stratégiques à chaque étape. La première étape consiste à développer une idée et à la transformer en un produit viable. Une fois que le produit a été conçu, les chefs de produit doivent le tester et le lancer sur le marché. La dernière étape consiste à surveiller les performances du produit et à apporter des modifications si nécessaire.

Les modèles d’apprentissage automatique peuvent être utilisés pour améliorer le processus d’architecture du produit. Les chefs de produit peuvent utiliser ces modèles pour analyser les données du marché et prendre des décisions plus éclairées. Les modèles peuvent également être utilisés pour tester le produit avant son lancement et identifier les points forts et les points faibles. Enfin, les modèles peuvent être utilisés pour surveiller les performances du produit et apporter des modifications si nécessaire.

En conclusion, l’architecture d’un produit est un processus complexe qui nécessite une planification et une gestion minutieuses. Les chefs de produit peuvent utiliser les modèles d’apprentissage automatique pour améliorer le processus d’architecture du produit et augmenter leur productivité. Les modèles peuvent être utilisés pour analyser les données du marché, tester le produit avant son lancement, surveiller les performances du produit et apporter des modifications si nécessaire.

Source de l’article sur DZONE

Plongée profonde dans AWS CDK : Techniques avancées d'Infrastructure as Code avec Typescript et Python

Plongez dans le monde d’AWS CDK et découvrez les techniques avancées d’Infrastructure as Code avec Typescript et Python !

Comprendre AWS CDK

Comprendre AWS CDK

Qu’est-ce que AWS CDK?

Le Kit de développement Cloud AWS (CDK) est un cadre de développement logiciel open source pour modéliser et fournir des ressources d’application cloud à l’aide de langages de programmation familiers. Les dispositions des applications cloud peuvent être effectuées via AWS CDK dans des langues familières aux développeurs, comme TypeScript et Python, étendant ainsi la flexibilité et la fonctionnalité qui peuvent ne pas être présentes dans une CloudFormation simple basée sur JSON/YAML.

Pourquoi utiliser AWS CDK?

AWS CDK offre une variété d’avantages pour les développeurs qui souhaitent déployer leurs applications cloud. Tout d’abord, il offre une grande flexibilité pour le développement d’applications cloud. Les développeurs peuvent utiliser leur langage de programmation préféré pour définir leurs ressources cloud, ce qui leur permet de créer des applications plus complexes et plus riches. En outre, AWS CDK offre une meilleure visibilité et une meilleure gestion des ressources cloud. Les développeurs peuvent voir clairement ce qui est déployé et comment cela est configuré, ce qui leur permet de mieux gérer leurs applications cloud.

Comment fonctionne AWS CDK?

AWS CDK fonctionne en convertissant le code TypeScript ou Python en CloudFormation. Une fois que le code est converti, il est envoyé à AWS CloudFormation pour être exécuté. AWS CloudFormation prend ensuite le code et le déploie sur les ressources cloud appropriées. Une fois le déploiement terminé, AWS CloudFormation envoie un rapport à l’utilisateur pour confirmer que le déploiement s’est bien déroulé. De plus, AWS CDK fournit des outils supplémentaires pour faciliter le développement et le déploiement des applications cloud.

Source de l’article sur DZONE

Améliorer la prise de décision avec Dyna-Q et Q-Learning

Dyna-Q et Q-Learning sont des méthodes puissantes pour améliorer la prise de décision. Elles offrent des solutions innovantes et efficaces pour résoudre des problèmes complexes.

Introduction à l’apprentissage Q

The learning process begins with initializing the Q-values to arbitrary values. After that, the agent interacts with the environment, observing the reward for each action taken. The agent then updates its Q-values using the Bellman equation, which takes into account the reward observed and the estimated future reward.

The agent continues this process until it converges to a policy that maximizes its expected reward. This process is known as exploration-exploitation, where the agent explores different actions to find the best one, and then exploits that action to maximize its reward.

Introduction à l’apprentissage Q

L’apprentissage Q est un algorithme sans modèle essentiel dans l’apprentissage par renforcement, se concentrant sur l’apprentissage de la valeur, ou «valeur Q», des actions dans des états spécifiques. Cette méthode excelle dans les environnements imprévisibles, car elle n’a pas besoin d’un modèle prédéfini de son environnement. Il s’adapte aux transitions stochastiques et aux récompenses variées de manière efficace, ce qui le rend polyvalent pour les scénarios où les résultats sont incertains. Cette flexibilité permet à l’apprentissage Q d’être un outil puissant dans les scénarios nécessitant une prise de décision adaptative sans connaissance préalable des dynamiques de l’environnement.

Processus d’apprentissage:

L’apprentissage Q fonctionne en mettant à jour une table de valeurs Q pour chaque action dans chaque état. Il utilise l’équation de Bellman pour mettre à jour ces valeurs de manière itérative en fonction des récompenses observées et de sa estimation des récompenses futures. La politique – la stratégie de choix d’actions – est dérivée de ces valeurs Q.

Le processus d’apprentissage commence par l’initialisation des valeurs Q à des valeurs arbitraires. Après cela, l’agent interagit avec l’environnement, observant la récompense pour chaque action prise. L’agent met alors à jour ses valeurs Q en utilisant l’équation de Bellman, qui tient compte de la récompense observée et de la récompense future estimée.

L’agent continue ce processus jusqu’à ce qu’il converge vers une politique qui maximise sa récompense attendue. Ce processus est connu sous le nom d’exploration-exploitation, où l’agent explore différentes actions pour trouver la meilleure, puis exploite cette action pour maximiser sa récompense.

Architecture de l’apprentissage Q

L’architecture de l’apprentissage Q est relativement simple et peut être représentée par un diagramme à blocs. Il comprend un agent qui interagit avec un environnement et un tableau de valeurs Q qui stocke les valeurs Q pour chaque action dans chaque état. Lorsque l’agent interagit avec l’environnement, il observe la récompense et met à jour le tableau de valeurs Q en utilisant l’équation de Bellman.

Le tableau de valeurs Q est le cœur de l’architecture de l’apprentissage Q. Il stocke les valeurs Q pour chaque action dans chaque état et est mis à jour par l’agent en fonction des récompenses observées et des estimations des récompenses futures. Une fois que le tableau est mis à jour, l’agent peut choisir la meilleure action à prendre

Source de l’article sur DZONE

Stratégies d'affinage LLM pour applications spécifiques au domaine.

Les stratégies d’affinage de modèles d’apprentissage machine (LLM) peuvent être appliquées pour adapter des applications spécifiques à un domaine. Découvrez comment ces stratégies peuvent améliorer vos résultats!

## Les modèles de langage larges (LLMs) sont des modèles d’intelligence artificielle (IA) avancés conçus pour comprendre la langue humaine et générer des réponses de type humain. Ils sont formés sur de grands jeux de données textuelles – d’où le nom « large » – construits sur un type de réseau neuronal appelé modèle de transformateur. Ils sont utilisés dans les chatbots et les assistants virtuels, la génération de contenu, la synthèse, la traduction, la génération de code, etc.

Testing LLMs is a crucial step in the development process. It is important to ensure that the model is working as expected and is able to handle different types of inputs. Testing can also help identify any potential issues or bugs in the model. It is also important to test the model’s performance on different datasets to ensure that it is able to generalize well.

Les modèles de langage larges (LLMs) sont des modèles d’intelligence artificielle (IA) avancés conçus pour comprendre la langue humaine et générer des réponses similaires à celles des humains. Ils sont formés à partir d’un grand nombre de jeux de données textuelles – d’où le nom «large» – construits sur un type de réseau neuronal appelé modèle de transformateur. Ils sont utilisés dans les chatbots et les assistants virtuels, la génération de contenu, la synthèse, la traduction, la génération de code, etc.

Une caractéristique remarquable des LLMs est leur capacité à être affinés. Ces derniers peuvent être formés plus avant pour améliorer leur performance globale et leur permettre d’adapter à de nouveaux domaines spécialisés, mettant en évidence leur adaptabilité et leur polyvalence.

Le test des LLMs est une étape cruciale du processus de développement. Il est important de s’assurer que le modèle fonctionne comme prévu et qu’il est capable de gérer différents types d’entrées. Les tests peuvent également aider à identifier tout problème ou bug potentiel dans le modèle. Il est également important de tester les performances du modèle sur différents jeux de données pour s’assurer qu’il est capable de généraliser correctement.

Source de l’article sur DZONE

Qu'est-ce qu'une base de données vectorielle SQL ?

Une base de données vectorielle SQL est un système de gestion de données qui permet de stocker, gérer et extraire des informations.

## Les modèles de langue larges (LLMs) ont facilité de nombreuses tâches, comme la création de chatbots, la traduction de langues, la résumé de texte et bien d’autres. Autrefois, nous devions écrire des modèles pour différentes tâches et il y avait toujours le problème de leur performance. Maintenant, nous pouvons facilement effectuer la plupart des tâches grâce aux LLMs. Cependant, les LLMs ont quelques limites lorsqu’ils sont appliqués à des cas d’utilisation du monde réel. Ils manquent d’informations spécifiques ou à jour, ce qui entraîne un phénomène appelé hallucination où le modèle génère des résultats incorrects ou imprévisibles. Les bases de données vectorielles se sont avérées très utiles pour atténuer le problème d’hallucination dans les LLMs en fournissant une base de données de données spécifiques au domaine que les modèles peuvent référencer. Cela réduit les instances de réponses inexactes ou incohérentes.

Coding is an essential part of LLMs. It is used to create the algorithms that are used to train the model. It also helps in creating the architecture of the model, which is the way the model is structured. The code helps the model to understand the data and make predictions. It also helps in optimizing the performance of the model by making sure that it is using the right parameters and hyperparameters.

Les grandes modèles linguistiques (LLMs) ont rendu de nombreuses tâches plus faciles, comme la création de chatbots, la traduction de langue, le résumé de texte et bien d’autres. Dans le passé, nous devions écrire des modèles pour différentes tâches, et il y avait toujours le problème de leur performance. Maintenant, nous pouvons facilement faire la plupart des tâches avec l’aide des LLMs. Cependant, les LLMs ont quelques limitations lorsqu’elles sont appliquées à des cas d’utilisation du monde réel. Elles manquent d’informations spécifiques ou à jour, ce qui conduit à un phénomène appelé hallucination où le modèle génère des résultats incorrects ou imprévisibles.

Les bases de données vectorielles se sont avérées très utiles pour atténuer le problème de l’hallucination dans les LLMs en fournissant une base de données de données spécifiques au domaine que les modèles peuvent référencer. Cela réduit les cas de réponses inexactes ou incohérentes.

Le codage est une partie essentielle des LLMs. Il est utilisé pour créer les algorithmes qui sont utilisés pour entraîner le modèle. Il aide également à créer l’architecture du modèle, qui est la façon dont le modèle est structuré. Le code aide le modèle à comprendre les données et à faire des prédictions. Il aide également à optimiser les performances du modèle en s’assurant qu’il utilise les bons paramètres et hyperparamètres.

Source de l’article sur DZONE

Maîtrise de l'ingénierie des modèles de langage AI.

La maîtrise de l’ingénierie des modèles de langage AI est une compétence essentielle pour les développeurs qui souhaitent créer des applications modernes.

Ingénierie de prompt, un aspect vital pour tirer le plein potentiel des modèles de langage IA

2. Testing

Testing is an important part of prompt engineering. It helps to identify any errors or inconsistencies in the instructions given to the model. This can be done by running the model on a set of test data and comparing the results with the desired output. This helps to identify any potential issues and allows for adjustments to be made accordingly.

3. Iterative Process

Prompt engineering is an iterative process. After testing, adjustments can be made to the instructions given to the model. This can include changing the wording, adding additional information, or providing more specific instructions. The process is repeated until the desired output is achieved.

Limitations of Prompt Engineering

Prompt engineering is not without its limitations. It can be difficult to write clear and specific instructions that are tailored to the task at hand. Additionally, the process can be time-consuming and requires a certain level of expertise in order to achieve the desired results. Finally, prompt engineering is not a one-size-fits-all solution and may not be suitable for all tasks.

Potential Applications of Prompt Engineering

Prompt engineering has a wide range of potential applications. It can be used to improve the accuracy of AI language models, such as natural language processing (NLP) and machine translation. It can also be used to create more engaging and interactive user experiences, such as chatbots and virtual assistants. Finally, prompt engineering can be used to develop more accurate and contextually relevant responses from AI systems.

Principes de l’ingénierie de prompt

1. Écrire des instructions claires et spécifiques

Le succès de l’ingénierie de prompt commence par fournir des instructions claires et non ambiguës. Clair ne signifie pas nécessairement une courte description. Être spécifique sur la sortie souhaitée aide le modèle à comprendre plus précisément la tâche. Par exemple, demandez à LLA d’être un expert dans le domaine que vous demandez.

2. Test

Le test est une partie importante de l’ingénierie de prompt. Il permet d’identifier toutes les erreurs ou incohérences dans les instructions données au modèle. Cela peut être fait en faisant fonctionner le modèle sur un jeu de données de test et en comparant les résultats avec la sortie souhaitée. Cela permet d’identifier tout problème potentiel et permet d’effectuer des ajustements en conséquence.

3. Processus itératif

L’ingénierie de prompt est un processus itératif. Après le test, des ajustements peuvent être apportés aux instructions données au modèle. Cela peut inclure le changement du mot, l’ajout d’informations supplémentaires ou la fourniture d’instructions plus spécifiques. Le processus est répété jusqu’à ce que la sortie souhaitée soit obtenue.

Limites de l’ingénierie de prompt

L’ingénierie de prompt n’est pas sans ses limites. Il peut être difficile d’écrire des instructions claires et spécifiques qui sont adaptées à la tâche à accomplir. De plus, le processus peut être long et nécessite un certain niveau d’expertise pour obtenir les résultats souhaités. Enfin, l’ingénierie de prompt n’est pas une solution unique et peut ne pas être adaptée à toutes les tâches.

Applications
Source de l’article sur DZONE

Réduire les Hallucinations LLM

Réduire les Hallucinations LLM est une tâche difficile, mais pas impossible. Nous allons découvrir ensemble les moyens pour y parvenir.

LLM Hallucination : Les Effets de l’IA Générative

One approach to reducing AI hallucinations is to simplify the architecture of the model. This involves reducing the number of layers and neurons, as well as reducing the complexity of the activation functions. Additionally, regularization techniques such as dropout and weight decay can be used to reduce overfitting. 

L’hallucination LLM fait référence au phénomène où de grands modèles linguistiques tels que des chatbots ou des systèmes de vision informatique génèrent des sorties non sensées ou inexactes qui ne correspondent pas aux vrais modèles ou objets. Ces faux résultats de l’IA proviennent de divers facteurs. Le surajustement à des données d’entraînement limitées ou biaisées est un grand coupable. Une grande complexité du modèle contribue également, permettant à l’IA de percevoir des corrélations qui n’existent pas.

Les grandes entreprises qui développent des systèmes génératifs d’IA prennent des mesures pour résoudre le problème des hallucinations de l’IA, bien que certains experts pensent que l’élimination complète des faux résultats ne soit pas possible.

Une approche pour réduire les hallucinations de l’IA consiste à simplifier l’architecture du modèle. Cela implique de réduire le nombre de couches et de neurones, ainsi que la complexité des fonctions d’activation. De plus, des techniques de régularisation telles que le dropout et le déclin des poids peuvent être utilisées pour réduire le surajustement.

Source de l’article sur DZONE

Applications AI génératives avec Amazon Bedrock : démarrage pour les développeurs Go

Les développeurs Go peuvent désormais facilement démarrer avec les applications AI génératives d’Amazon Bedrock. Découvrez comment tirer parti de ces outils puissants !

## Guide introductif pour les développeurs Go qui veulent se lancer dans la création d’applications d’IA générative avec Amazon Bedrock

  • Creating an Amazon Bedrock account
  • Setting up the AWS Go SDK
  • Testing the API
  • Building a Generative AI application
  • Cet article est un guide introductif pour les développeurs Go qui souhaitent se lancer dans la création d’applications d’intelligence générative à l’aide d’Amazon Bedrock, un service entièrement géré qui rend les modèles de base d’Amazon et des fournisseurs de modèles tiers accessibles via une API.

    Nous utiliserons le SDK Go AWS pour Amazon Bedrock et nous aborderons les sujets suivants au fur et à mesure :

    • Créer un compte Amazon Bedrock
    • Configurer le SDK Go AWS
    • Tester l’API
    • Construire une application d’intelligence générative
    • Pour commencer, vous devez créer un compte Amazon Bedrock. Vous pouvez le faire en vous connectant à votre compte Amazon et en recherchant « Amazon Bedrock » dans la barre de recherche. Une fois que vous avez trouvé le service, vous pouvez cliquer sur « Créer un compte » et suivre les instructions pour créer votre compte.

      Une fois que vous avez créé votre compte, vous devez configurer le SDK Go AWS pour pouvoir accéder aux API Amazon Bedrock. Pour ce faire, vous devez télécharger le SDK Go AWS et l’installer sur votre ordinateur. Une fois que vous avez installé le SDK, vous devez configurer les variables d’environnement afin que le SDK puisse se connecter à votre compte Amazon Bedrock.

      Une fois que vous avez configuré le SDK Go AWS, vous pouvez commencer à tester l’API Amazon Bedrock. Vous pouvez le faire en écrivant des requêtes HTTP pour interroger l’API et en analysant les réponses que vous obtenez. Cela vous permettra de voir comment l’API réagit à différentes requêtes et de vérifier si elle fonctionne correctement.

      Source de l’article sur DZONE

      Optimiser les coûts Kubernetes avec FinOps

      Optimiser les coûts Kubernetes avec FinOps est une solution qui permet d’améliorer l’efficacité et la rentabilité des déploiements Kubernetes.

      Rapport de tendance DZone 2023 sur Kubernetes dans l’entreprise

      Cependant, le chemin vers un FinOps Kubernetes efficace est loin d’être unidimensionnel. Il s’agit d’une pratique en constante évolution qui doit être affinée en fonction des réalités opérationnelles et des exigences architecturales. Si un certain modèle de coûts continue à rapporter des retours sans submerger les ressources, peut-être est-il temps de le mettre à l’échelle. Inversement, un déficit budgétaire récurrent peut signaler la nécessité d’une vaste réforme financière.

      Le codage joue un rôle important dans l’optimisation des dépenses liées à Kubernetes. Les outils de codage peuvent aider à automatiser des tâches répétitives et à rationaliser les processus, ce qui permet aux équipes de se concentrer sur des projets plus stratégiques et de réduire les coûts. Les outils de codage peuvent également aider à déployer des applications plus rapidement et à réduire le temps de développement et de mise en production. Enfin, ils peuvent aider les équipes à surveiller et à optimiser les performances des applications, ce qui peut entraîner une réduction des coûts liés à la maintenance et à l’exploitation.

      Les outils de codage sont essentiels pour une gestion financière optimale des déploiements Kubernetes. Les organisations doivent s’assurer qu’elles disposent des outils et des compétences nécessaires pour tirer parti des avantages qu’offrent ces technologies. Les outils de codage peuvent aider les organisations à réduire leurs coûts et à améliorer leurs performances, ce qui est essentiel pour rester compétitif dans un monde numérique en constante évolution.

      Source de l’article sur DZONE