Create Beautiful WordPress Pages with Optimized Images Using Elementor and ImageEngine

WordPress powers nearly 40% of all websites, thanks to its commitment to making publication possible for everyone, for free. Combined with premium plugins and themes, it’s possibly the ultimate tool for building attractive, unique, and feature-rich websites without any coding or design experience.

However, you do pay the price for this experience, with WordPress and its third-party products not always being built for performance – whether it’s page loading times or SEO.

Image optimization is a particularly big concern. Images are one, if not the largest, contributors to page weight, and it’s growing significantly by the year. So, while images are crucial for beautifying your website pages, they are also one of the biggest factors slowing it down.

In terms of image optimization, WordPress+Elementor brings very little to the table. WordPress core now comes with both responsive syntax and lazy-loading. Elementor itself also only comes with responsive syntax out-of-the-box. However, these are baseline techniques for image optimization that will deliver the bare minimum of improvements.

This means that, while Elementor makes it easy to design sweet-looking WordPress pages (with tonnes of creatively utilized images), you will probably pay the price when it comes to performance. But don’t worry. We will show you how to dramatically improve web performance by over 30 points on scoring tools like Google’s PageSpeed Insight

Why Optimize Your Elementor Images with ImageEngine?

In general, image CDNs use various techniques to get image payloads as small as possible and deliver image content faster, all while minimizing the visual impact. ImageEngine is no different in that regard.

Firstly, ImageEngine, when used in auto mode, will apply all of the following optimizations that web performance tools like Google’s PageSpeed Insight recommend. For example:

  • Properly size images – ImageEngine automatically resizes images for optimal size-to-quality ratios depending on the screen size of the user device. ImageEngine supports Retina devices.
  • Efficiently encode images – Applies different rates of compression depending on the PPI of the user devices. For example, ImageEngine adapts and more aggressively compresses on higher PPI devices without losing visual quality.
  • Next-gen format conversion – Automatically converts images to the optimal next-gen format according to the browser, device, or OS. ImageEngine can convert images to WebP or JPEG-2000 as well as GIFs to MP4 or WebP.  AVIF is also available in a manual directive mode.
  • Strip unnecessary metadata

While these features are standard for most image CDNs, ImageEngine is unique for its use of WURFL device detection. This gives ImageEngine much deeper insight into the user device accessing a website page and, by extension, its images. Using the screen size, resolution, PPI, etc., ImageEngine can make more intelligent decisions regarding how to reduce image payloads while maintaining visual quality.

This is why ImageEngine brands itself as an “intelligent, device-aware” image CDN and why it can reduce image payloads by as much as 80% (if not more).

ImageEngine also provides a proprietary CDN service to accelerate image delivery. The CDN consists of 20 globally positioned PoPs with the device-aware logic built-in. This allows you to deliver image content faster in different regions while also serving images straight from the cache with a ~98% hit ratio.

ImageEngine also supports Chrome’s save data setting. If someone has a slow connection or has activated this setting, ImageEngine will automatically compress image payloads even more, to provide a better user experience on slower connections.

How to Use ImageEngine with WordPress and Elementor

If you’re using WordPress and Elementor, then chances are you want to spend as little time on development and other technicalities as possible. Luckily, ImageEngine is a highly streamlined tool that requires little to no effort to integrate or maintain with a WordPress site.

Assuming you already have a WordPress website with Elementor, here are the step-by-step instructions to use ImageEngine:

  1. Go to and sign up for a 30-day free trial.
  2. Provide ImageEngine with the URL of the website you want to optimize.
  3. Create an account (or sign up with your existing Google, GitHub, or ScientiaMobile account).
  4. Provide ImageEngine with the current origin where your images are served from. If you upload images to your WordPress website as usual, then that means providing your WordPress website address again.
  5. Finally, ImageEngine will generate an ImageEngine delivery address for you from where your optimized images will be served. This typically takes the form of: {randomstring} You can change the delivery address to something more meaningful from the dashboard, such as

Now, to set up ImageEngine on your WordPress website:

  1. Go to the WordPress dashboard and head to Plugins -> Add New.
  2. Search for the “Image CDN” plugin by ImageEngine. When you find it, install and activate the plugin.

  1. Go to Settings -> Image CDN. OK, so this is the ImageEngine plugin dashboard. To configure it, all you need to do is:

a. Copy the delivery address you got from ImageEngine above and paste it in the “Delivery Address” field.

b. Tick the “Enable ImageEngine” box.

That’s literally it. All images that you use on your WordPress/Elementor pages should now be served via the ImageEngine CDN already optimized. 

ImageEngine is largely a “set-it-and-forget-it” tool. It will provide the best results in auto mode with no user input. However, you can override some of ImageEngine’s settings from the dashboard or by using URL directives to manipulate images.

For example, you can resize an image to 300 px width and convert it to WebP by changing the src attribute like this:

<img src="">

However, use this only when necessary, as doing so will limit ImageEngine’s adaptability under different conditions.

What Improvement Can You Expect?

Let’s see what results you can expect from using an image CDN to improve your page loading times.

For this, I created two identical WordPress pages using the Elementor theme. The one page purely relied on WordPress and Elementor, while I installed and set up ImageEngine for the other. The page had some galleries as well as full-size images:

The pages used many high-quality images, as you might expect to find on a professional photography gallery, photography blog, stock photo website, large e-commerce site, etc. I then ran page performance tests using Chrome’s built-in Lighthouse audit tool, choosing scores representing the average results I got for each page.

For thoroughness, I tested both the mobile and desktop performance. However, I focused on the mobile results as these showcase more of the image CDN’s responsive capabilities. Mobile traffic also accounts for the majority share of internet traffic and seems to be the focus for search engines going forward.

So, first of all, let’s see the mobile score for the page without ImageEngine:

As you can see, there was definitely a struggle to deliver the huge amount of image content. Google has shown that 53% of mobile users abandon a page that takes more than 3s to load. So, clearly, this page has major concerns when it comes to user experience and retaining traffic.

The desktop version fared much better, although it still left much to be desired:

When digging into the reasons behind the slowdown, we can identify the following problems:

Most of the issues related somehow to the size and weight of the images. As you can see, Lighthouse identified a 3.8 MB payload while the total image payload of the entire page was close to 40 MB.

Now, let’s see what kind of improvement ImageEngine can make to these issues by looking at the mobile score first:

So, as you can see, a major improvement of 30 points over the standard WordPress/Elementor page. The time to load images was cut down by roughly 80% across the key core web vital metrics, such as FCP, LCP, and the overall Speed Index.

In fact, we just reached that critical 3s milestone for the FCP (the largest element on the visible area of the page when it initially loads), which creates the impression that the page has finished loading and will help you retain a lot of mobile traffic.

The desktop score was also much higher, and there was further improvement across the key performance metrics.

If we look at the performance problems still present, we see that images are almost completely removed as a concern. We also managed to bring down the initial 3.8 MB payload to around 1.46 MB, which is a ~62% reduction:

An unfortunate side effect of using WordPress and WordPress plugins is that you will almost inevitably face a performance hit due to all the additional JavaScript and CSS. This is part of the reason why we didn’t see even larger improvements. That’s the price you pay for the convenience of using these tools.

That being said, the more images you have on your pages, and the larger their sizes, the more significant the improvement will be.

It’s also worth noting that lazy-loaded images were loaded markedly faster with ImageEngine if you quickly scroll down the page, again making for an improved user experience.

Thanks to its intelligent image compression, there was also no visible loss in image quality, as you can see from this comparison:


So, as you can see, we can achieve significant performance improvements on image-heavy websites by using the ImageEngine image CDN, despite inherent performance issues using a CMS. This will translate to happier users, better search engine rankings, and an overall more successful website.

The best part is that ImageEngine stays true to the key principles of WordPress. You don’t have to worry about any of the nuts and bolts on the inside. And, ImageEngine will automatically adjust automation strategies as needed, future-proofing you against having to occasionally rework images for optimization.


The post Create Beautiful WordPress Pages with Optimized Images Using Elementor and ImageEngine first appeared on Webdesigner Depot.

Source de l’article sur Webdesignerdepot

Intermarché choisit les solutions SAP Ariba pour optimiser sa chaîne de valeur et répondre aux attentes des consommateurs

Intermarché, enseigne alimentaire du Groupement Les Mousquetaires s’appuie sur les solutions de procurement Ariba de SAP pour assurer la fluidité et l’efficacité de sa chaine d’approvisionnement et de distribution, afin de répondre au mieux aux enjeux contemporains et aux attentes toujours grandissantes des consommateurs. Grâce à un outil intégré, les différents corps de métiers peuvent collaborer via une seule interface et selon des processus communs, ce qui permet une vision globale sur l’ensemble des flux et un suivi de tous les indicateurs de performance, favorisant la prise de décision et une réponse rapide et fiable aux besoins de l’entreprise et de ses clients.

Le contexte de crise sanitaire et les différentes formes de restrictions de mobilité qui ont traversé le territoire cette dernière année ont montré combien il était important pour une entreprise d’assurer la solidité et la fiabilité de sa chaîne d’approvisionnement.

L’épidémie de la Covid-19 a également accéléré les évolutions des comportements des consommateurs, et il tient à cœur à Intermarché de répondre présent face à ces nouveaux enjeux, c’est pourquoi le groupe a opéré sa transformation. La digitalisation de la vie professionnelle s’accompagne aussi de la digitalisation des modes de consommation, avec un recours plus fréquent au e-commerce. Les enjeux sociétaux et environnementaux font désormais partie intégrante de l’équation lors des choix de consommation des clients. L’hygiène et les impératifs sanitaires ont été exacerbés par la crise. Suite à la crise économique qui résulte de l’épidémie, les consommateurs sont plus que jamais à la recherche de prix très attractifs.

Une solution pour assurer la bonne traçabilité des produits marques de distributeurs et répondre mieux aux attentes des consommateurs.

La stratégie d’Intermarché repose sur six piliers. Le relai « Producteurs & Commerçants », qui est l’ADN d’Intermarché, implique de disposer d’un outil industriel efficient et réactif. Le retravail constant et l’optimisation des recettes, afin de répondre aux attentes des consommateurs désireux de manger mieux. Communiquer sur les avantages des produits Intermarché pour les consommateurs, et leur apporter toutes les informations qu’ils recherchent. Des activations promotionnelles pour répondre aux attentes des clients sur les prix des produits. Des prix bas toute l’année et une forte compétitivité prix, surtout au regard de la crise économique que nous traversons. Une transformation pour plus d’agilité, afin de s’adapter au monde en constante évolution.

La qualité de l’alimentation est plus que jamais au cœur des préoccupations des consommateurs, notamment via les gammes de produits bio. Les solutions Procurement SAP Ariba permettent à Intermarché d’assurer la bonne traçabilité de ses produits, et de répondre aux attentes des clients désireux d’en savoir plus sur la qualité et l’origine des produits qu’ils consomment. Pour assurer cette traçabilité, Intermarché peut s’appuyer sur la méthode et l’efficacité de l’outil Ariba. Celui-ci permet de suivre et analyser les données, afin de piloter et optimiser la chaine d’approvisionnement en fonction des demandes des consommateurs. Enfin, la fluidité des informations entre les collaborateurs et les fournisseurs de production est assurée par l’intégration à cet outil unique.

Une transformation engagée grâce à un outil unique adapté à l’ensemble des profils et corps de métier.

Pour faire face à la croissance du nombre d’appels d’offre et du nombre de fournisseurs, la complexité grandissante des références et l’impératif de toujours réduire le time to market pour répondre aux attentes des consommateurs, il était crucial pour Intermarché de pouvoir s’appuyer sur un outil intégré de pilotage, c’est pourquoi le groupe a choisi les solutions Achats SAP Ariba.

Le programme de transformation d’Intermarché se base sur cinq objectifs :

  1. Améliorer la qualité et l’échange de l’information entre les services et avec le fournisseur.
  2. Disposer de l’agilité nécessaire pour anticiper les événements et problématiques, tels que les renouvellements d’appels d’offres etc.
  3. Homogénéiser les processus d’approvisionnement.
  4. Piloter tous les services et processus, et mettre en place des KPIs.
  5. Améliorer le time to market; les distributeurs producteurs se doivent d’être rapides pour répondre immédiatement aux demandes des consommateurs.

Proposant une vaste variété de produits en marques de distributeurs (frais, épicerie, alimentaire hors import), les 59 usines intégrées au Groupement Les Mousquetaires et les 600 fournisseurs d’Intermarché collaborent au travers d’un outil unique, pour gérer les achats, identifier et anticiper les besoins, suivre l’historique, simplifier les appels d’offre, piloter l’entreprise via des processus homogènes et des indicateurs de performance communs.

Aujourd’hui, les collaborateurs Intermarché se sont approprié l’outil, et l’implantation d’Ariba est une réussite. La collaboration est facilitée par l’intégration sur un outil unique des différents profils et corps de métier qui interviennent tout au long de la chaine de valeurs. Le time to market a été multiplié par 2,25, avec un time to market moyen passé de 18 mois à 8 mois pour les marques de distributeurs. Le groupe ne cache pas ses ambitions de l’abaisser à 6 voire 3 mois en profitant pleinement des capacités proposées par les solutions SAP Ariba.

« La réussite de notre programme de transformation repose sur trois facteurs majeurs. D’abord, mettre les équipes au cœur du projet, les questionner sur les besoins et défis, pour les intégrer à la mise en place de la solution. Ensuite, rester simples et pragmatiques, et ne pas perdre de vue les objectifs de départ. Enfin, anticiper et accompagner le changement, en parallèle de l’élaboration de l’outil, est une clé de réussite. Les collaborateurs et les fournisseurs ont pris en main cet outil, ce qui est un très bon indicateur du succès du projet. Il y a énormément de positif dans ce qui est en train de se passer. » témoignent Matthieu Bidan, chef d’entreprise Intermarché à Gratentour (31) et  Guillaume Delpech, en charge de la direction des Achats Marques Propres Intermarché – Netto.

À propos de SAP

La stratégie de SAP vise à aider chaque organisation à fonctionner en “entreprise intelligente”. En tant que leader du marché des logiciels d’application d’entreprise, nous aidons les entreprises de toutes tailles et de tous secteurs à opérer au mieux : 77 % des transactions commerciales mondiales entrent en contact avec un système SAP®. Nos technologies de Machine Learning, d’Internet des objets (IoT) et d’analytique avancées aident nos clients à transformer leurs activités en “entreprises intelligentes”. SAP permet aux personnes et aux organisations d’avoir une vision approfondie de leur business et favorise la collaboration afin qu’elles puissent garder une longueur d’avance sur leurs concurrents. Nous simplifions la technologie afin que les entreprises puissent utiliser nos logiciels comme elles le souhaitent – sans interruption. Notre suite d’applications et de services de bout en bout permet aux clients privés et publics de 25 secteurs d’activité dans le monde de fonctionner de manière rentable, de s’adapter en permanence et de faire la différence. Avec son réseau mondial de clients, partenaires, employés et leaders d’opinion, SAP aide le monde à mieux fonctionner et à améliorer la vie de chacun.

Pour plus d’informations, visitez le site .

Contacts presse SAP
Daniel Margato, Directeur Communication : 06 64 25 38 08 –
Pauline Barriere : –
SAP News Center. Suivez SAP sur Twitter : @SAPNews.


The post Intermarché choisit les solutions SAP Ariba pour optimiser sa chaîne de valeur et répondre aux attentes des consommateurs appeared first on SAP France News.

Source de l’article sur

Flutter 2.0 State Management Introduction With Provider 5.0

With Flutter 2.0, you can build apps on mobile, web and desktop.  Graphics performance is fantastic and the development tools are great. The main barrier to learning Flutter is an understanding of state management.  This tutorial covers the Provider package, one of the most popular and easiest tools to manage state in Flutter.

A video version of this tutorial is available. Code and image files are on GitHub. 

Source de l’article sur DZONE

Qu’est-ce qu’un Data Warehouse ?

Un data warehouse (entrepôt de données) est un système de stockage numérique qui connecte et harmonise de grandes quantités de données provenant de nombreuses sources différentes. Il a pour but d’alimenter la Business Intelligence (BI), le reporting et l’analyse, ainsi que soutenir la conformité aux exigences réglementaires afin que les entreprises puissent exploiter leurs données et prendre des décisions intelligentes fondées sur les données. Les data warehouse stockent les données actuelles et historiques dans un seul et même endroit et constituent ainsi une source unique de vérité pour une organisation.

Les données sont envoyées vers un data warehouse à partir de systèmes opérationnels (tels qu’un système ERP ou CRM), de bases de données et de sources externes comme les systèmes partenaires, les appareils IoT, les applications météo ou les réseaux sociaux, généralement de manière régulière. L’émergence du cloud computing a changé la donne. Ces dernières années, le stockage des données a été déplacé de l’infrastructure sur site traditionnelle vers de multiples emplacements, y compris sur site, dans le Cloud privé et dans le Cloud public.

Les data warehouse modernes sont conçus pour gérer à la fois les données structurées et les données non structurées, comme les vidéos, les fichiers image et les données de capteurs. Certains utilisent les outils analytiques intégrés et la technologie de base de données in-memory (qui conserve l’ensemble de données dans la mémoire de l’ordinateur plutôt que dans l’espace disque) pour fournir un accès en temps réel à des données fiables et favoriser une prise de décision en toute confiance. Sans entreposage de données, il est très difficile de combiner des données provenant de sources hétérogènes, de s’assurer qu’elles sont au bon format pour les analyses et d’obtenir une vue des données sur le court terme et sur le long terme.

Schéma qui montre ce qu'est un data warehouse

Avantages de l’entreposage de données

Un data warehouse bien conçu constitue la base de tout programme de BI ou d’analyse réussi. Son principal objectif est d’alimenter les rapports, les tableaux de bord et les outils analytiques devenus indispensables aux entreprises d’aujourd’hui. Un entrepôt de données fournit les informations dont vous avez besoin pour prendre des décisions basées sur les données et vous aide à faire les bons choix, que ce soit pour le développement de nouveaux produits ou la gestion des niveaux de stock. Un data warehouse présente de nombreux avantages. En voici quelques-uns :

  • Un meilleur reporting analytique : grâce à l’entreposage de données, les décideurs ont accès à des données provenant de plusieurs sources et n’ont plus besoin de prendre des décisions basées sur des informations incomplètes.
  • Des requêtes plus rapides : les data warehouse sont spécialement conçus pour permettre l’extraction et l’analyse rapides des données. Avec un entrepôt de données, vous pouvez très rapidement demander de grandes quantités de données consolidées avec peu ou pas d’aide du service informatique.
  • Une amélioration de la qualité des données : avant de charger les données dans l’entrepôt de données le système met en place des nettoyages de données afin de garantir que les données sont converties dans un seul et même format dans le but de faciliter les analyses (et les décisions), qui reposent alors sur des données précises et de haute qualité.
  • Une visibilité sur les données historiques : en stockant de nombreuses données historiques, un data warehouse permet aux décideurs d’analyser les tendances et les défis passés, de faire des prévisions et d’améliorer l’organisation au quotidien.

Capture d'écran de la solution SAP Data Warehouse Cloud

Que peut stocker un data warehouse ?

Lorsque les data warehouse sont devenus populaires à la fin des années 1980, ils étaient conçus pour stocker des informations sur les personnes, les produits et les transactions. Ces données, appelées données structurées, étaient bien organisées et mises en forme pour en favoriser l’accès. Cependant, les entreprises ont rapidement voulu stocker, récupérer et analyser des données non structurées, comme des documents, des images, des vidéos, des e-mails, des publications sur les réseaux sociaux et des données brutes issues de capteurs.

Un entrepôt de données moderne peut contenir des données structurées et des données non structurées. En fusionnant ces types de données et en éliminant les silos qui les séparent, les entreprises peuvent obtenir une vue complète et globale sur les informations les plus précieuses.

Termes clés

Il est essentiel de bien comprendre un certain nombre de termes en lien avec les data warehouse. Les plus importants ont été définis ci-dessous. Découvrez d’autres termes et notre FAQ dans notre glossaire.

Data warehouse et base de données

Les bases de données et les data warehouse sont tous deux des systèmes de stockage de données, mais diffèrent de par leurs objectifs. Une base de données stocke généralement des données relatives à un domaine d’activité particulier. Un entrepôt de données stocke les données actuelles et historiques de l’ensemble de l’entreprise et alimente la BI et les outils analytiques. Les data warehouse utilisent un serveur de base de données pour extraire les données présentes dans les bases de données d’une organisation et disposent de fonctionnalités supplémentaires pour la modélisation des données, la gestion du cycle de vie des données, l’intégration des sources de données, etc.

Data warehouse et lac de données

Les data warehouse et les lacs de données sont utilisés pour stocker le Big Data, mais sont des systèmes de stockage très différents. Un data warehouse stocke des données qui ont été formatées dans un but spécifique, tandis qu’un lac de données stocke les données dans leur état brut, non traité, dont l’objectif n’a pas encore été défini. Les entrepôts de données et les lacs de données se complètent souvent. Par exemple, lorsque des données brutes stockées dans un lac s’avèrent utiles pour répondre à une question, elles peuvent être extraites, nettoyées, transformées et utilisées dans un data warehouse à des fins d’analyse. Le volume de données, les performances de la base de données et les coûts du stockage jouent un rôle important dans le choix de la solution de stockage adaptée.

Diagramme qui montre la différence entre un data warehouse et un lac de données

Data warehouse et datamart

Un datamart est une sous-section d’un data warehouse, partitionné spécifiquement pour un service ou un secteur d’activité, comme les ventes, le marketing ou la finance. Certains datamarts sont également créés à des fins opérationnelles autonomes. Alors qu’un data warehouse sert de magasin de données central pour l’ensemble de l’entreprise, un datamart utilise des données pertinentes à un groupe d’utilisateurs désigné. Ces utilisateurs peuvent alors accéder plus facilement aux données, accélérer leurs analyses et contrôler leurs propres données. Plusieurs datamarts sont souvent déployés dans un data warehouse.

Diagramme d'un data mart et de son fonctionnement

Quels sont les composants clés d’un data warehouse ?

Un data warehouse classique comporte quatre composants principaux : une base de données centrale, des outils ETL (extraction, transformation, chargement), des métadonnées et des outils d’accès. Tous ces composants sont conçus pour être rapides afin de vous assurer d’obtenir rapidement des résultats et vous permettre d’analyser les données à la volée.

Diagramme montrant les composants d'un data warehouse

  1. Base de données centrale : une base de données sert de fondement à votre data warehouse. Depuis le départ, on utilisait essentiellement des bases de données relationnelles standard exécutées sur site ou dans le Cloud. Mais en raison du Big Data, du besoin d’une véritable performance en temps réel et d’une réduction drastique des coûts de la RAM, les bases de données in-memory sont en train de monter en puissance.
  2. Intégration des données : les données sont extraites des systèmes source et modifiées pour aligner les informations afin qu’elles puissent être rapidement utilisées à des fins analytiques à l’aide de différentes approches d’intégration des données telles que l’ETL (extraction, transformation, chargement) et les services de réplication de données en temps réel, de traitement en masse, de transformation des données et de qualité et d’enrichissement des données.
  3. Métadonnées : les métadonnées sont des données relatives à vos données. Elles indiquent la source, l’utilisation, les valeurs et d’autres fonctionnalités des ensembles de données présents dans votre data warehouse. Il existe des métadonnées de gestion, qui ajoutent du contexte à vos données, et des métadonnées techniques, qui décrivent comment accéder aux données, définissent leur emplacement ainsi que leur structure.
  4. Outils d’accès du data warehouse : les outils d’accès permettent aux utilisateurs d’interagir avec les données de votre data warehouse. Exemples d’outils d’accès : outils de requête et de reporting, outils de développement d’applications, outils d’exploration de données et outils OLAP.

Architecture de data warehouse 

Auparavant, les data warehouse fonctionnaient par couches, lesquelles correspondaient au flux des données de gestion.

Diagramme de l'architecture d'un data warehouse

Couche de données

Les données sont extraites de vos sources, puis transformées et chargées dans le niveau inférieur à l’aide des outils ETL. Le niveau inférieur comprend votre serveur de base de données, les datamarts et les lacs de données. Les métadonnées sont créées à ce niveau et les outils d’intégration des données, tels que la virtualisation des données, sont utilisés pour combiner et agréger les données en toute transparence.

Couche sémantique

Au niveau intermédiaire, les serveurs OLAP (Online Analytical Processing) et OLTP (Online Transaction Processing) restructurent les données pour favoriser des requêtes et des analyses rapides et complexes.

Couche analytique

Le niveau supérieur est la couche du client frontend. Il contient les outils d’accès du data warehouse qui permettent aux utilisateurs d’interagir avec les données, de créer des tableaux de bord et des rapports, de suivre les KPI, d’explorer et d’analyser les données, de créer des applications, etc. Ce niveau inclut souvent un workbench  ou une zone de test pour l’exploration des données et le développement de nouveaux modèles de données.

Un data warehouse standard comprend les trois couches définies ci-dessus. Aujourd’hui, les entrepôts de données modernes combinent OLTP et OLAP dans un seul système.

Les data warehouse, conçus pour faciliter la prise de décision, ont été essentiellement créés et gérés par les équipes informatiques. Néanmoins, ces dernières années, ils ont évolué pour renforcer l’autonomie des utilisateurs fonctionnels, réduisant ainsi leur dépendance aux équipes informatiques pour accéder aux données et obtenir des informations exploitables. Parmi les fonctionnalités clés d’entreposage de données qui ont permis de renforcer l’autonomie des utilisateurs fonctionnels, on retrouve les suivantes :

  1. La couche sémantique ou de gestion fournit des expressions en langage naturel et permet à tout le monde de comprendre instantanément les données, de définir des relations entre les éléments dans le modèle de données et d’enrichir les zones de données avec de nouvelles informations.
  2. Les espaces de travail virtuels permettent aux équipes de regrouper les connexions et modèles de données dans un lieu sécurisé et géré, afin de mieux collaborer au sein d’un espace commun, avec un ensemble de données commun.
  3. Le Cloud a encore amélioré la prise de décision en permettant aux employés de disposer d’un large éventail d’outils et de fonctionnalités pour effectuer facilement des tâches d’analyse des données. Ils peuvent connecter de nouvelles applications et de nouvelles sources de données sans avoir besoin de faire appel aux équipes informatiques.


The Future of Analytics Has Arrived

Click the button below to load the content from YouTube.

The Future of Analytics Has Arrived

Kate Wright, responsable de la Business Intelligence augmentée chez SAP, évoque la valeur d’un data warehouse Cloud moderne.

Les 7 principaux avantages d’un data warehouse Cloud  

Les data warehouse Cloud gagnent en popularité, à juste titre. Ces entrepôts modernes offrent plusieurs avantages par rapport aux versions sur site traditionnelles. Voici les sept principaux avantages d’un data warehouse Cloud :

  1. Déploiement rapide : grâce à l’entreposage de données Cloud, vous pouvez acquérir une puissance de calcul et un stockage de données presque illimités en quelques clics seulement, et créer votre propre data warehouse, datamarts et systèmes de test en quelques minutes.
  2. Faible coût total de possession (TCO) : les modèles de tarification du data warehouse en tant que service (DWaaS) sont établis de sorte que vous payez uniquement les ressources dont vous avez besoin, lorsque vous en avez besoin. Vous n’avez pas besoin de prévoir vos besoins à long terme ou de payer pour d’autres traitements tout au long de l’année. Vous pouvez également éviter les coûts initiaux tels que le matériel coûteux, les salles de serveurs et le personnel de maintenance. Séparer les coûts du stockage des coûts informatiques vous permet également de réduire les dépenses.
  3. Élasticité : un data warehouse Cloud vous permet d’ajuster vos capacités à la hausse ou à la baisse selon vos besoins. Le Cloud offre un environnement virtualisé et hautement distribué capable de gérer d’immenses volumes de données qui peuvent diminuer ou augmenter.
  4. Sécurité et restauration après sinistre : dans de nombreux cas, les data warehouse Cloud apportent une sécurité des données et un chiffrage plus forts que les entrepôts sur site. Les données sont également automatiquement dupliquées et sauvegardées, ce qui vous permet de minimiser le risque de perte de données.
  5. Technologies en temps réel : les data warehouse Cloud basés sur la technologie de base de données in-memory présentent des vitesses de traitement des données extrêmement rapides, offrant ainsi des données en temps réel et une connaissance instantanée de la situation.
  6. Nouvelles technologies : les data warehouse Cloud vous permettent d’intégrer facilement de nouvelles technologies telles que l’apprentissage automatique, qui peuvent fournir une expérience guidée aux utilisateurs fonctionnels et une aide décisionnelle sous la forme de suggestions de questions à poser, par exemple.
  7. Plus grande autonomie des utilisateurs fonctionnels : les data warehouse Cloud offrent aux employés, de manière globale et uniforme, une vue unique sur les données issues de nombreuses sources et un vaste ensemble d’outils et de fonctionnalités pour effectuer facilement des tâches d’analyse des données. Ils peuvent connecter de nouvelles applications et de nouvelles sources de données sans avoir besoin de faire appel aux équipes informatiques.
Capture d'écran de la solution SAP Data Warehouse Cloud
L’entreposage de données prend en charge l’analyse complète des dépenses de l’entreprise par service, fournisseur, région et statut, pour n’en citer que quelques-unes.

Meilleures pratiques concernant l’entreposage des données

Pour atteindre vos objectifs et économiser du temps et de l’argent, il est recommandé de suivre certaines étapes éprouvées lors de la création d’un data warehouse ou l’ajout de nouvelles applications à un entrepôt existant. Certaines sont axées sur votre activité tandis que d’autres s’inscrivent dans le cadre de votre programme informatique global. Vous pouvez commencer avec la liste de meilleures pratiques ci-dessous, mais vous en découvrirez d’autres au fil de vos collaborations avec vos partenaires technologiques et de services.

Meilleures pratiques métier

Meilleures pratiques informatiques

Définir les informations dont vous avez besoin. Une fois que vous aurez cerné vos besoins initiaux, vous serez en mesure de trouver les sources de données qui vous aideront à les combler. La plupart du temps, les groupes commerciaux, les clients et les fournisseurs auront des recommandations à vous faire. 

Surveiller la performance et la sécurité. Les informations de votre data warehouse sont certes précieuses, mais elles doivent quand même être facilement accessibles pour apporter de la valeur à l’entreprise. Surveillez attentivement l’utilisation du système pour vous assurer que les niveaux de performance sont élevés. 

Documenter l’emplacement, la structure et la qualité de vos données actuelles. Vous pouvez ensuite identifier les lacunes en matière de données et les règles de gestion pour transformer les données afin de répondre aux exigences de votre entrepôt.

Gérer les normes de qualité des données, les métadonnées, la structure et la gouvernance. De nouvelles sources de données précieuses sont régulièrement disponibles, mais nécessitent une gestion cohérente au sein d’un data warehouse. Suivez les procédures de nettoyage des données, de définition des métadonnées et de respect des normes de gouvernance.

Former une équipe. Cette équipe doit comprendre les dirigeants, les responsables et le personnel qui utiliseront et fourniront les informations. Par exemple, identifiez le reporting standard et les KPI dont ils ont besoin pour effectuer leurs tâches.

Fournir une architecture agile. Plus vos unités d’affaires et d’entreprise utiliseront les données, plus vos besoins en matière de datamarts et d’entrepôts augmenteront. Une plate-forme flexible s’avérera bien plus utile qu’un produit limité et restrictif. 

Hiérarchiser vos applications de data warehouse. Sélectionnez un ou deux projets pilotes présentant des exigences raisonnables et une bonne valeur commerciale.

Automatiser les processus tels que la maintenance. Outre la valeur ajoutée apportée à la Business Intelligence, l’apprentissage automatique peut automatiser les fonctions de gestion technique du data warehouse pour maintenir la vitesse et réduire les coûts d’exploitation.

Choisir un partenaire technologique compétent pour l’entrepôt de données. Ce dernier doit offrir les services d’implémentation et l’expérience dont vous avez besoin pour la réalisation de vos projets. Assurez-vous qu’il puisse répondre à vos besoins en déploiement, y compris les services Cloud et les options sur site. 

Utiliser le Cloud de manière stratégique. Les unités d’affaires et les services ont des besoins en déploiement différents. Utilisez des systèmes sur site si nécessaire et misez sur des data warehouse Cloud pour bénéficier d’une évolutivité, d’une réduction des coûts et d’un accès sur téléphone et tablette.  

Développer un bon plan de projet. Travaillez avec votre équipe sur un plan et un calendrier réalistes qui rendent possible les communications et le reporting de statut.

En résumé 

Les data warehouse modernes, et, de plus en plus, les data warehouse Cloud, constitueront un élément clé de toute initiative de transformation numérique pour les entreprises mères et leurs unités d’affaires. Les data warehouse exploitent les systèmes de gestion actuels, en particulier lorsque vous combinez des données issues de plusieurs systèmes internes avec de nouvelles informations importantes provenant d’organisations externes.

Les tableaux de bord, les indicateurs de performance clés, les alertes et le reporting répondent aux exigences des cadres dirigeants, de la direction et du personnel, ainsi qu’aux besoins des clients et des fournisseurs importants. Les data warehouse fournissent également des outils d’exploration et d’analyse de données rapides et complexes, et n’ont pas d’impact sur les performances des autres systèmes de gestion.

Pictogramme qui représente un entrepôt de données

Découvrez la solution SAP Data Warehouse Cloud

Unifiez vos données et analyses pour prendre des décisions avisées et obtenir la flexibilité nécessaire pour un contrôle efficace des coûts, notamment grâce à un paiement selon l’utilisation.

En savoir plus

Publié en anglais sur

The post Qu’est-ce qu’un Data Warehouse ? appeared first on SAP France News.

Source de l’article sur

Qu’est-ce que le Big Data ?

Le Big Data est le flot d’informations dans lequel nous nous trouvons tous les jours (des zettaoctets de données provenant de nos ordinateurs, des terminaux mobiles et des capteurs). Ces données sont utilisées par les entreprises pour orienter la prise de décisions, améliorer les processus et les stratégies, et créer des produits, des services et des expériences centrés sur le client.

Le Big Data désigne non seulement de gros volumes de données, mais aussi des données de nature variée et complexe. Il dépasse généralement la capacité des bases de données traditionnelles à capturer, gérer et traiter ce type de données. De plus, le Big Data peut provenir de n’importe où et de tout ce que nous sommes en mesure de surveiller numériquement. Les satellites, les appareils IoT (Internet des Objets), les radars et les tendances des réseaux sociaux ne sont que quelques exemples parmi la multitude de sources de données explorées et analysées pour rendre les entreprises plus résilientes et compétitives.

L’importance de l’analyse du Big Data

La véritable valeur du Big Data se mesure d’après votre capacité à l’analyser et à le comprendre. L’intelligence artificielle (IA), le machine learning et les technologies de base de données modernes permettent de visualiser et d’analyser le Big Data pour fournir des informations exploitables en temps réel. L’analyse du Big Data aide les entreprises à exploiter leurs données en vue de saisir de nouvelles opportunités et de créer de nouveaux modèles de gestion. Comme l’a si bien dit Geoffrey Moore, auteur et analyste de gestion, « sans analyse du Big Data, les entreprises sont aveugles et sourdes, errant sur le Web comme des cerfs sur une autoroute ».

How does Big Data and Analytics work? Simply Explained

Click the button below to load the content from YouTube.

How does Big Data and Analytics work? Simply Explained

L’évolution du Big Data

Aussi inconcevable que cela puisse paraître aujourd’hui, l’Apollo Guidance Computer a emmené l’homme sur la lune avec moins de 80 kilo-octets de mémoire. Depuis, la technologie informatique s’est développée à un rythme exponentiel, de même que la génération de données. La capacité technologique mondiale à stocker des données a doublé tous les trois ans depuis les années 1980. Il y a un peu plus de 50 ans, lors du lancement d’Apollo 11, la quantité de données numériques générées dans le monde aurait pu tenir dans un ordinateur portable. Aujourd’hui, l’IDC estime ce chiffre à 44 zettaoctets (soit 44 000 milliards de gigaoctets) et prévoit qu’il atteindra 163 zettaoctets en 2025.

44 zettaoctets de données numériques aujourd’hui, IDC

163 zettaoctets de données numériques en 2025, IDC

Plus les logiciels et la technologie se développent, moins les systèmes non numériques sont viables. Le traitement des données générées et collectées numériquement requiert des systèmes de data management plus avancés. En outre, la croissance exponentielle des plates-formes de réseaux sociaux, des technologies pour smartphones et des appareils IoT connectés numériquement ont contribué à l’émergence du Big Data.

Types de Big Data : que sont les données structurées et non structurées ?

Les ensembles de données sont généralement catégorisés en trois types, selon leur structure et la complexité de leur indexation.

Illustration des différents types de big data : données structurées, données non-structurées, données semi-structurées.

  1. Données structurées : ce type de données est le plus simple à organiser et à rechercher. Il peut inclure des données financières, des machine logs et des détails démographiques. Une feuille de calcul Microsoft Excel, avec sa mise en forme de colonnes et de lignes prédéfinies, offre un moyen efficace de visualiser les données structurées. Ses composants peuvent facilement être catégorisés, ce qui permet aux concepteurs et administrateurs de bases de données de définir des algorithmes simples pour la recherche et l’analyse. Même lorsque les données structurées sont très volumineuses, elles ne sont pas nécessairement qualifiées de Big Data, car elles sont relativement simples à gérer et ne répondent donc pas aux critères qui définissent le Big Data. Traditionnellement, les bases de données utilisent un langage de programmation appelé SQL (Structured Query Language) pour gérer les données structurées. SQL a été développé par IBM dans les années 1970 pour permettre aux développeurs de créer et gérer des bases de données relationnelles (de type feuille de calcul) qui commençaient à émerger à l’époque.
  2. Données non structurées : cette catégorie de données peut inclure des publications sur les réseaux sociaux, des fichiers audio, des images et des commentaires client ouverts. Ces données ne peuvent pas être facilement capturées dans les bases de données relationnelles standard en lignes et colonnes. Auparavant, les entreprises qui voulaient rechercher, gérer ou analyser de grandes quantités de données non structurées devaient utiliser des processus manuels laborieux. La valeur potentielle liée à l’analyse et à la compréhension de ces données ne faisait aucun doute, mais le coût associé était souvent trop exorbitant pour en valoir la peine. Compte tenu du temps nécessaire, les résultats étaient souvent obsolètes avant même d’être générés. Contrairement aux feuilles de calcul ou aux bases de données relationnelles, les données non structurées sont généralement stockées dans des lacs de données, des entrepôts de données et des bases de données NoSQL.
  3. Données semi-structurées : comme leur nom l’indique, les données semi-structurées intègrent à la fois des données structurées et non structurées. Les e-mails en sont un bon exemple, car ils incluent des données non structurées dans le corps du message, ainsi que d’autres propriétés organisationnelles telles que l’expéditeur, le destinataire, l’objet et la date. Les dispositifs qui utilisent le marquage géographique, les horodatages ou les balises sémantiques peuvent également fournir des données structurées avec un contenu non structuré. Une image de smartphone non identifiée, par exemple, peut indiquer qu’il s’agit d’un selfie et préciser l’heure et l’endroit où il a été pris. Une base de données moderne exécutant une technologie d’IA peut non seulement identifier instantanément différents types de données, mais aussi générer des algorithmes en temps réel pour gérer et analyser efficacement les ensembles de données disparates.

Les sources du Big Data

Les objets générateurs de données se développent à un rythme spectaculaire, depuis les drones jusqu’aux grille-pains. Toutefois, à des fins de catégorisation, les sources de données sont généralement divisées en trois types :

Illustration des différentes sources du big data : données sociales, données machine, données altérables.

Données sociales

Comme leur nom l’indique, les données sociales sont générées par les réseaux sociaux : commentaires, publications, images et, de plus en plus, vidéos. En outre, compte tenu de l’ubiquité croissante des réseaux 4G et 5G, on estime que le nombre de personnes dans le monde qui regardent régulièrement des contenus vidéo sur leur smartphone atteindra 2,72 milliards en 2023. Bien que les tendances concernant les réseaux sociaux et leur utilisation évoluent rapidement et de manière imprévisible, leur progression en tant que générateurs de données numériques est incontestable.

Données machine

Les machines et appareils IoT sont équipés de capteurs et ont la capacité d’envoyer et de recevoir des données numériques. Les capteurs IoT aident les entreprises à collecter et traiter les données machine provenant des appareils, des véhicules et des équipements. Globalement, le nombre d’objets générateurs de données augmente rapidement, des capteurs météorologiques et de trafic jusqu’à la surveillance de la sécurité. Selon l’IDC, il y aura plus de 40 milliards d’appareils IoT en 2025, générant près de la moitié des données numériques mondiales.

Données altérables

Il s’agit des données parmi les plus évolutives au monde. Par exemple, un détaillant international traite plus d’un million de transactions client par heure. Si l’on ajoute à cela les transactions d’achat et bancaires au niveau mondial, on comprend mieux le volume phénoménal de données générées. En outre, les données altérables contiennent de plus en plus de données semi-structurées, y compris des images et des commentaires, ce qui les rend d’autant plus complexes à gérer et à traiter.

Les cinq V du Big Data

Ce n’est pas parce qu’un ensemble de données est volumineux qu’il s’agit nécessairement de Big Data. Pour être qualifiées en tant que telles, les données doivent posséder au minimum les cinq caractéristiques suivantes :

Illustration des 5 V du Big Data : Volume, Vitesse, Variété, Véracité, Valeur.

  1. Volume : même si le volume n’est pas le seul composant qui constitue le Big Data, il s’agit d’une de ses caractéristiques principales. Pour gérer et exploiter pleinement le Big Data, des algorithmes avancés et des analyses pilotées par l’IA sont nécessaires. Mais avant tout cela, il doit exister un moyen fiable et sécurisé de stocker, d’organiser et d’extraire les téraoctets de données détenus par les grandes entreprises.
  2. Vitesse : auparavant, les données générées devaient ensuite être saisies dans un système de base de données traditionnel (souvent manuellement) avant de pouvoir être analysées ou extraites. Aujourd’hui, grâce à la technologie du Big Data, les bases de données sont capables de traiter, d’analyser et de configurer les données lorsqu’elles sont générées, parfois en l’espace de quelques millisecondes. Pour les entreprises, cela signifie que les données en temps réel peuvent être exploitées pour saisir des opportunités financières, répondre aux besoins des clients, prévenir la fraude et exécuter toute autre activité pour laquelle la rapidité est un facteur clé.
  3. Variété : les ensembles de données contenant uniquement des données structurées ne relèvent pas nécessairement du Big Data, quel que soit leur volume. Le Big Data comprend généralement des combinaisons de données structurées, non structurées et semi-structurées. Les solutions de gestion des données et les bases de données traditionnelles n’offrent pas la flexibilité et le périmètre nécessaires pour gérer les ensembles de données complexes et disparates qui constituent le Big Data.
  4. Véracité : bien que les bases de données modernes permettent aux entreprises d’accumuler et d’identifier des volumes considérables de Big Data de différents types, elles ne sont utiles que si elles sont précises, pertinentes et opportunes. S’agissant des bases de données traditionnelles alimentées uniquement avec des données structurées, le manque de précision des données était souvent dû à des erreurs syntaxiques et des fautes de frappe. Les données non structurées présentent toute une série de nouvelles difficultés en matière de véracité. Les préjugés humains, le « bruit social » et les problèmes liés à la provenance des données peuvent avoir un impact sur la qualité des données.
  5. Valeur : les résultats de l’analyse du Big Data sont souvent fascinants et inattendus. Mais pour les entreprises, l’analyse du Big Data doit fournir une visibilité qui les aident à gagner en compétitivité et en résilience, et à mieux servir leurs clients. Les technologies modernes du Big Data offrent la possibilité de collecter et d’extraire des données susceptibles de procurer un avantage mesurable à la fois en termes de résultats et de résilience opérationnelle.

Avantages du Big Data

Les solutions modernes de gestion du Big Data permettent aux entreprises de transformer leurs données brutes en informations pertinentes avec une rapidité et une précision sans précédent.

  • Développement de produits et de services :l’analyse du Big Data permet aux développeurs de produits d’analyser les données non structurées, telles que les témoignages clients et les tendances culturelles, et de réagir rapidement.
  • Maintenance prédictive : dans le cadre d’uneenquête internationale, McKinsey a constaté que l’analyse du Big Data émanant des machines IoT pouvait réduire les coûts de maintenance des équipements jusqu’à 40 %.
  • Expérience client :dans le cadre d’une enquête réalisée en 2020 auprès de responsables d’entreprises du monde entier, Gartner a déterminé que « les entreprises en croissance collectent plus activement des données sur l’expérience client que les entreprises à croissance nulle ». L’analyse du Big Data permet aux entreprises d’améliorer et de personnaliser l’expérience de leurs clients avec leur marque.
  • Gestion de la résilience et des risques :la pandémie de COVID-19 a été une véritable prise de conscience pour de nombreux dirigeants d’entreprise qui se sont rendu compte à quel point leur activité était vulnérable. La visibilité offerte par le Big Data peut aider les entreprises à anticiper les risques et à se préparer aux imprévus.
  • Économies et efficacité accrue : lorsque les entreprises effectuent une analyse avancée du Big Data pour tous les processus de l’organisation, elles peuvent non seulement détecter les inefficacités, mais aussi déployer des solutions rapides et efficaces.
  • Amélioration de la compétitivité : les informations obtenues grâce au Big Data peuvent aider les entreprises à réaliser des économies, à satisfaire leurs clients, à concevoir de meilleurs produits et à innover dans les opérations de gestion.

IA et Big Data

La gestion du Big Data repose sur des systèmes capables de traiter et d’analyser efficacement de gros volumes d’informations disparates et complexes. À cet égard, le Big Data et l’IA ont une relation de réciprocité. Sans l’IA pour l’organiser et l’analyser, le Big Data n’aurait pas grande utilité. Et pour que l’IA puisse générer des analyses suffisamment fiables pour être exploitables, le Big Data doit contenir des ensembles de données suffisamment étendus. Comme l’indique Brandon Purcell, analyste chez Forrester Research, « les données sont au cœur de l’intelligence artificielle. Un système d’IA doit apprendre des données pour remplir sa fonction ».

« Les données sont au cœur de l’intelligence artificielle. Un système d’IA doit apprendre des données pour remplir sa fonction ».

Brandon Purcell, analyste, Forrester Research

Machine learning et Big Data

Les algorithmes de machine learning définissent les données entrantes et identifient des modèles associés. Ces informations permettent de prendre des décisions avisées et d’automatiser les processus. Le machine learning se nourrit du Big Data, car plus les ensembles de données analysés sont fiables, plus le système est susceptible d’apprendre, de faire évoluer et d’adapter ses processus en continu.

Technologies du Big Data

Architecture du Big Data

À l’instar de l’architecture du bâtiment, l’architecture du Big Data fournit un modèle pour la structure de base déterminant la manière dont les entreprises gèrent et analysent leurs données. L’architecture du Big Data mappe les processus requis pour gérer le Big Data à travers quatre « couches » de base, des sources de données au stockage des données, puis à l’analyse du Big Data, et enfin via la couche de consommation dans laquelle les résultats analysés sont présentés en tant que Business Intelligence.

‍Analyse du Big Data

Ce processus permet de visualiser les données de manière pertinente grâce à l’utilisation de la modélisation des données et d’algorithmes spécifiques aux caractéristiques du Big Data. Dans le cadre d’une étude approfondie et d’une enquête de la MIT Sloan School of Management, plus de 2 000 dirigeants d’entreprise ont été interrogés sur leur expérience en matière d’analyse du Big Data. Comme on pouvait s’y attendre, ceux qui s’étaient impliqués dans le développement de stratégies de gestion du Big Data ont obtenu les résultats les plus significatifs.

Big Data et Apache Hadoop

Imaginez une grande boîte contenant 10 pièces de 10 centimes et 100 pièces de 5 centimes. Puis imaginez 10 boîtes plus petites, côte à côte, contenant chacune 10 pièces de 5 centimes et une seule pièce de 10 centimes. Dans quel scénario sera-t-il plus facile de repérer les pièces de 10 centimes ? Hadoop fonctionne sur ce principe. Il s’agit d’une structure en open source permettant de gérer le traitement du Big Data distribué sur un réseau constitué de nombreux ordinateurs connectés. Ainsi, au lieu d’utiliser un gros ordinateur pour stocker et traiter toutes les données, Hadoop regroupe plusieurs ordinateurs sur un réseau pouvant évoluer presque à l’infini et analyse les données en parallèle. Ce processus utilise généralement un modèle de programmation appelé MapReduce, qui coordonne le traitement du Big Data en regroupant les ordinateurs distribués.

Lacs de données, entrepôts de données et NoSQL

Les bases de données traditionnelles de type feuille de calcul SQL servent à stocker les données structurées. Le Big Data non structuré et semi-structuré nécessite des modèles de stockage et de traitement uniques, car il ne peut pas être indexé et catégorisé. Les lacs de données, les entrepôts de données et les bases de données NoSQL sont des référentiels de données capables de gérer les ensembles de données non traditionnels. Un lac de données est un vaste pool de données brutes qui n’ont pas encore été traitées. Un entrepôt de données est un référentiel de données qui ont déjà été traitées à des fins spécifiques. Les bases de données NoSQL fournissent un schéma flexible qui peut être modifié en fonction de la nature des données à traiter. Ces systèmes présentent chacun des avantages et des inconvénients, c’est pourquoi de nombreuses entreprises utilisent plutôt une combinaison de ces référentiels de données pour répondre au mieux à leurs besoins.

Bases de données in-memory

Les bases de données traditionnelles sur disque ont été conçues pour SQL et les bases de données relationnelles. Bien qu’elles soient capables de traiter de gros volumes de données structurées, elles ne sont pas adaptées au stockage et au traitement des données non structurées. Dans le cas des bases de données in-memory, le traitement et l’analyse se font entièrement dans la RAM, pour ne pas avoir à extraire les données d’un système sur disque. Les bases de données in-memory reposent également sur des architectures distribuées. Cela signifie qu’elles peuvent atteindre des vitesses beaucoup plus élevées en utilisant le traitement parallèle, par rapport aux modèles de base de données sur disque à un seul nœud.

Fonctionnement du Big Data

Le Big Data remplit ses fonctions lorsque son analyse fournit des informations pertinentes et exploitables qui améliorent l’activité de manière significative. Pour se préparer à la transition vers le Big Data, les entreprises doivent s’assurer que leurs systèmes et processus sont en mesure de collecter, de stocker et d’analyser le Big Data.

Illustration du fonctionnement du Big Data : collecter le Big Data, stocker le Big Data, Analyser le Big Data

  1. Collecter le Big Data.Une grande partie du Big Data est constituée d’énormes ensembles de données non structurées qui émanent de sources disparates et incohérentes. Les bases de données traditionnelles sur disque et les mécanismes d’intégration des données ne sont pas suffisamment performants pour les gérer. La gestion du Big Data requiert des solutions de base de données in-memory et des solutions logicielles spécifiques de l’acquisition de ce type de données.
  2. Stocker le Big Data.Comme son nom l’indique, le Big Data est volumineux. De nombreuses entreprises utilisent des solutions de stockage sur site pour leurs données existantes et espèrent réaliser des économies en réutilisant ces référentiels pour traiter le Big Data. Toutefois, le Big Data est plus performant lorsqu’il n’est pas soumis à des contraintes de taille et de mémoire. Les entreprises qui n’intègrent pas dès le départ des solutions de stockage Cloud dans leurs modèles de Big Data le regrettent souvent quelques mois plus tard.
  3. Analyser le Big Data. Il est impossible d’exploiter pleinement le potentiel du Big Data sans utiliser les technologies d’IA et de machine learning pour l’analyser. L’un des cinq V du Big Data est la « vitesse ». Pour être utiles et exploitables, les informations du Big Data doivent être générées rapidement. Les processus d’analyse doivent s’auto-optimiser et tirer régulièrement profit de l’expérience, un objectif qui ne peut être atteint qu’avec l’IA et les technologies modernes de bases de données.

Applications du Big Data

La visibilité offerte par le Big Data est bénéfique à la plupart des entreprises ou secteurs d’activité. Cependant, ce sont les grandes entreprises aux missions opérationnelles complexes qui en tirent souvent le meilleur parti.


Dans le Journal of Big Data, une étude de 2020 souligne que le Big Data « joue un rôle important dans l’évolution du secteur des services financiers, en particulier dans le commerce et les investissements, la réforme fiscale, la détection et les enquêtes en matière de fraude, l’analyse des risques et l’automatisation ». Le Big Data a également contribué à transformer le secteur financier en analysant les données et les commentaires des clients pour obtenir les informations nécessaires à l’amélioration de la satisfaction et de l’expérience client. Les ensembles de données altérables figurent parmi les plus importants et les plus évolutifs au monde. L’adoption croissante de solutions avancées de gestion du Big Data permettra aux banques et aux établissements financiers de protéger ces données et de les utiliser d’une manière qui bénéficie à la fois au client et à l’entreprise.

Hygiène et santé

L’analyse du Big Data permet aux professionnels de santé d’établir des diagnostics plus précis, fondés sur des données avérées. De plus, le Big Data aide les administrateurs d’hôpitaux à identifier les tendances, à gérer les risques et à limiter les dépenses inutiles, afin de consacrer le maximum de fonds aux soins des patients et à la recherche. En cette période de pandémie, les chercheurs du monde entier s’efforcent de traiter et de gérer au mieux la COVID-19, et le Big Data joue un rôle fondamental dans ce processus. Un article de juillet 2020 paru dans The Scientist explique comment des équipes médicales ont pu collaborer et analyser le Big Data afin de lutter contre le coronavirus : « Nous pourrions transformer la science clinique en exploitant les outils et les ressources du Big Data et de la science des données d’une manière que nous pensions impossible ».

Transport et logistique

L’« effet Amazon » est un terme qui définit la manière dont Amazon a fait de la livraison en un jour la nouvelle norme, les clients exigeant désormais la même vitesse d’expédition pour tout ce qu’ils commandent en ligne. Le magazine Entrepreneur souligne qu’en raison de l’effet Amazon, « la course logistique au dernier kilomètre ne fera que s’intensifier ». Les entreprises du secteur s’appuient de plus en plus sur l’analyse du Big Data pour optimiser la planification des itinéraires, la consolidation des charges et les mesures d’efficacité énergétique.


Depuis l’apparition de la pandémie, les établissements d’enseignement du monde entier ont dû réinventer leurs programmes d’études et leurs méthodes d’enseignement afin de faciliter l’apprentissage à distance. L’un des principaux défis a été de trouver des moyens fiables d’analyser et d’évaluer la performance des étudiants et l’efficacité globale des méthodes d’enseignement en ligne. Un article paru en 2020 au sujet de l’impact du Big Data sur la formation et l’apprentissage en ligne indique, au sujet des enseignants, que « le Big Data les aide à gagner en confiance pour personnaliser l’enseignement, développer l’apprentissage mixte, transformer les systèmes d’évaluation et promouvoir l’apprentissage continu ».

Énergie et services publics

Selon le U.S. Bureau of Labor Statistics, le service public consacre plus de 1,4 milliard de dollars aux relevés de compteurs et s’appuie généralement sur des compteurs analogiques et des lectures manuelles peu fréquentes. Les relevés de compteurs intelligents fournissent des données numériques plusieurs fois par jour et, grâce à l’analyse du Big Data, ces informations permettent d’accroître l’efficacité de la consommation énergétique, ainsi que la précision des prix et des prévisions. En outre, lorsque les agents n’ont plus à se charger des relevés de compteurs, la saisie et l’analyse des données peuvent permettre de les réaffecter plus rapidement là où les réparations et les mises à niveau sont les plus urgentes.

Publié en anglais sur

The post Qu’est-ce que le Big Data ? appeared first on SAP France News.

Source de l’article sur

Fonctionnalités clés d’un ERP moderne : quelques exemples remarquables

Les nouvelles technologies peuvent changer la donne dans le milieu des logiciels d’entreprise. Pourtant, c’est à l’amélioration de l’expérience utilisateur que l’on attribue une véritable valeur. De la même façon, quand on parle de conversion au numérique, il ne s’agit pas de continuer à faire les mêmes choses avec de nouvelles technologies, mais de transformer les méthodes de gestion des entreprises. Les technologies innovantes fournissent de nouvelles fonctionnalités rimant avec nouvelles opportunités pour les entreprises et les particuliers.

SAP HANA est l’une de ces technologies qui changent la donne pour les logiciels d’entreprise. Bien plus qu’une simple base de données, il s’agit de la base sur laquelle repose SAP S/4HANA. Grâce à SAP HANA, les données sont utilisées autrement, c’est-à-dire d’une manière plus intelligente et prédictive.

SAP S/4HANA s’accompagne de cas d’apprentissage automatique intégrés (par exemple, automatisation intelligente pour la conformité fiscale, réapprovisionnement piloté par la demande, prévision des livraisons fournisseurs, affectation intelligente du personnel et des ressources, et prévision des performances de vente), grâce au socle d’Intelligence Artificielle (IA) qui sous-tend SAP HANA.

Tels sont les ingrédients qui forment une nouvelle expérience utilisateur caractérisé par le passage « de l’information à l’action », car les utilisateurs peuvent obtenir des informations pertinentes qui facilitent la prise de décision. Cette fonctionnalité est l’une des clés d’un progiciel de gestion intégré (ERP) moderne, optimisé par SAP HANA. Cette visibilité sur les informations permet d’obtenir une vue d’ensemble complète et en temps réel sur une entreprise, notamment sur les informations concernant les liquidités, les statistiques de commandes, les actifs et la satisfaction des clients. Même si les systèmes ERP hérités offraient également cette possibilité dans une certaine mesure, les informations étaient issues d’instantanés de données statiques et obsolètes, basés sur des agrégats précalculés dans les bases de données. Ces limites technologiques étaient source d’incertitudes et nous empêchaient de prendre des décisions parfaitement éclairées, notamment en raison de notre incapacité à réagir en temps réel à des événements imprévus.

Le modèle de données unifié dans SAP S/4HANA permet aux entreprises de s’appuyer sur une source d’informations unique, une autre fonctionnalité clé d’un ERP moderne. Le modèle de données unifié calcule des indicateurs de performance clés (KPI) à la volée, en s’appuyant sur des postes individuels réels au lieu d’agrégats sans horodatage, ce qui permet de refléter la réalité à l’instant t. Les clients peuvent voir leur stock en temps réel. Cependant, le modèle de données lui-même n’est que la base d’un nouveau niveau de visibilité. Afin que ces informations soient exploitées concrètement, des fonctionnalités d’analyse intégrées préviennent les utilisateurs des événements de gestion dès qu’ils se produisent. Par ailleurs, elles guident les utilisateurs pour les aider à éviter les problèmes et les exceptions.

Il en va de même pour la finance, où le journal universel rassemble des tables et des livres auxiliaires qui auparavant étaient séparés. Cette fonctionnalité permet une clôture en douceur et une consolidation à la demande qui donne aux dirigeants une vue complète sur toutes les données pertinentes, ce qui les aide à prendre des décisions avisées et rend l’entreprise plus agile. Elle enregistre également toutes les données financières au même endroit et permet ainsi un traitement parallèle cohérent entre tous les livres auxiliaires et les flux de valeurs. De plus, le journal universel s’intègre parfaitement à SAP HANA de par sa structure simple, sans agrégat ni hiérarchie. Grâce à la technologie in-memory, il est facile et rapide d’établir des rapports à partir des données du journal universel. Les ledgers représentent un volet essentiel dans le journal universel. En extrayant les données d’une table à une autre, ils permettent un reporting prompt et efficace des données financières en vertu des différentes normes comptables et attributs.

En ce qui concerne l’agilité, selon une étude réalisée par l’Economist Intelligence Unit Ltd. auprès de 800 directeurs et dirigeants financiers, la gestion des changements inattendus par rapport aux prévisions financières et l’adaptation des processus financiers à la rapide évolution des modèles d’affaires font partie des principaux défis que les dirigeants financiers doivent relever dans l’exécution de leurs activités quotidiennes. En outre, 90 % des dirigeants financiers pensent que le service financier doit simplifier la planification d’entreprise collaborative pour veiller à ce que les plans opérationnels soient alignés sur les plans financiers et stratégiques.

La possibilité d’exécuter la planification, l’analyse du compte de résultat et le reporting du groupe en se basant sur le même ensemble de données bouleversera la finance à jamais. Cela étant, nous nous dirigeons vers une vision plus tournée vers l’avenir. Pour parvenir à cette fin, il convient de combiner intelligemment les données en temps réel (de même que les données de planification, de prévision et de simulation), afin de détecter les risques et les opportunités pour y réagir sans tarder. Cela rend les processus encore plus efficaces et intelligents, tout en offrant de nouvelles opportunités pour la finance à l’avenir. Lors de périodes de pandémie comme celle que nous connaissons aujourd’hui, cela a donné à nombre de nos clients la force de traverser la tourmente et l’agilité nécessaire pour évoluer dans des environnements en constante évolution.

Mais la visibilité seule ne suffit pas pour combler le fossé entre les systèmes analytiques et transactionnels, fossé qui s’observe chez les systèmes ECC hérités. L’automatisation, l’aide à la décision et l’IA ne peuvent pas être pleinement exploités en raison de cette fracture technologique. C’est là que la partie « action » entre en jeu : les utilisateurs professionnels reçoivent alors les conseils dont ils ont besoin pour prendre des décisions et réaliser des opérations dans les workflows et les processus intelligents hautement automatisés.

Il existe de nombreux exemples d’utilisations innovantes de SAP S/4HANA sur SAP HANA dans divers domaines : MRP (planification des besoins en composants) Live, MRP piloté par la demande, gestion des stocks, finance, disponibilité à la vente, traitement des reliquats et nouvelle configuration des produits à variantes.

Prenons, à titre d’illustration, MRP Live, l’Application MRP et les fonctions prédictives de MRP. Avec MRP Live, les clients peuvent planifier et évaluer de très gros volumes de données en temps réel. Par rapport aux anciens cycles MRP et évaluations, MRP Live et l’Application MRP peuvent être exécutés plus fréquemment ; aussi, le gestionnaire peut améliorer de manière significative les KPI tels que les niveaux de stock et les accords sur le niveau de service proposés aux clients. En outre, avec les fonctions prédictives de MRP, il est possible d’exécuter des simulations de l’usine. Cette approche MRP nouvelle génération dans SAP S/4HANA convertit automatiquement les exceptions en propositions de solution.

Nos clients qui utilisent MRP Live sont des entreprises de toutes tailles, qui opèrent dans toutes les régions et tous les secteurs (notamment, machines et composants industriels ou encore biens de consommation). Thermo Cables, une entreprise de taille moyenne basée en Inde, utilise SAP S/4HANA et ce faisant, elle a fait croître son chiffre d’affaires grâce à une visibilité accrue, couplée à des processus de gestion clés (cycles MRP exécutés sur des données en temps réel, par exemple) et un accès instantané aux rapports couvrant toutes les fonctions de l’entreprise. Nous pouvons également citer ANTA, un fabricant de vêtements de sport, qui a pu améliorer le mécanisme de calcul MRP et réduire de 80 % le temps nécessaire pour modifier les nomenclatures grâce à la modification des données par lots. Avec SAP S/4HANA, ANTA a également réussi à rehausser l’efficacité en matière de consommation des stocks de 90 % grâce aux mises à jour automatiques reçues pour un grand nombre de commandes.

Le MRP piloté par la demande, une composante de SAP S/4HANA, vérifie régulièrement la situation de la demande et du réapprovisionnement, puis propose des niveaux optimaux de marge et de stock dont la mise en œuvre est à portée de clic. La demande et le réapprovisionnement peuvent désormais être ajustés plus souvent et plus régulièrement, ce qui se traduit par un pilotage plus efficace des processus adjacents. Auparavant, les entreprises menaient une fois par an un projet d’optimisation des stocks dans une feuille Excel. À présent, cette tâche est remplacée par un processus de routine automatisé qui assure la meilleure capacité de livraison, tout en optimisant les actifs et les liquidités de l’entreprise en question.

La pandémie de COVID-19 nous a montré à quel point les chaînes logistiques mondiales sont fragiles et peuvent être perturbées rapidement. Mais les logiciels d’entreprise ont aidé les organisations à rester agiles pour réduire les incertitudes et l’impact financier sur leurs activités.

Comme je l’ai décrit au début, quand on parle de conversion au numérique, il ne s’agit pas d’exécuter les mêmes activités en exploitant les nouvelles technologies, mais de transformer les méthodes de gestion des entreprises. C’est ce à quoi les entreprises doivent se préparer si elles veulent surmonter les défis d’aujourd’hui.

Thomas Saueressig est membre du Conseil de direction Ingénierie de produits de SAP SE
Cet article est initialement paru sur LinkedIn.

The post Fonctionnalités clés d’un ERP moderne : quelques exemples remarquables appeared first on SAP France News.

Source de l’article sur

Faurecia choisit SAP SuccessFactors pour développer une nouvelle expérience collaborateur

SAP annonce ce jour que l’équipementier automobile Faurecia a choisi SAP et SuccessFactors pour l’accompagner dans la digitalisation de ses processus RH afin de valoriser le potentiel de ses employés tout en leur permettant d’évoluer dans leur carrière de manière proactive.

Avec ses 266 sites industriels, 39 centres de R&D et ses 114 000 employés présents dans 35 pays, Faurecia est l’un des dix premiers équipementiers automobiles mondiaux proposant des solutions pour la Mobilité Durable et le Cockpit du Futur.

Simplifier les processus RH et développer les talents

Le SIRH de Faurecia s’est construit sur la base du développement de l’entreprise et des acquisitions externes, comptant jusqu’à 65 systèmes de paie différents.

Pour offrir un nouvelle expérience collaborateur, Faurecia a décidé de centraliser toutes ses données RH et la gestion de la paie en un unique endroit et une seule interface. L’objectif : promouvoir le développement individuel et profiter d’un panorama complet des processus RH qu’il s’agisse de la formation, la définition des objectifs et l’évaluation des performances des collaborateurs, la gestion des salaires et du personnel.

En choisissant SAP SuccessFactors, Faurecia a fait le choix d’un système collaboratif et accessible qui accompagne le développement du potentiel des collaborateurs par la formation, le management direct et les ressources humaines.

Des collaborateurs acteurs de leur carrière

Grâce à l’implémentation de la solution SAP SuccessFactors, Faurecia dispose d’un accès aux évaluations de performance et aux modèles de compétences de ses employés dans le monde entier, afin de leur proposer des formations adaptées à leurs objectifs et parcours professionnel. Cela offre aux managers la possibilité de mieux accompagner les salariés dans leur développement et leurs évolutions de carrière.

La mise en place de SAP SuccessFactors a permis à l’entreprise de profiter d’une source de donnée unique et d’une solution de paie intégrée facilitant de suivi des processus RH et la gestion de l’architecture du SIRH. Les informations RH sont dorénavant centralisées en un même endroit et accessibles en temps réel. Avec SAP SuccessFactors Mobile App, les managers peuvent organiser des entretiens à tout moment, depuis leur téléphone, avec tous les renseignements nécessaires sur le candidat. Grâce à l’intégration de SAP On-Prem Payroll et de Employees Central, le Groupe bénéficie de données de meilleure qualité et de l’enregistrement automatisé des informations RH.

Très bien accueillie par l’ensemble des collaborateurs grâce à une communication régulière, la solution est aujourd’hui pleinement adoptée par l’ensemble des acteurs de l’entreprise.

« SAP SuccessFactors a complètement changé la manière de promouvoir la formation en interne. Aujourd’hui, les employés peuvent d’eux-mêmes avoir accès au catalogue de formations et être pleinement acteur de leur développement professionnel. Nous profitons également de données plus qualitatives grâce à un système unique pour la paie et pour tous les processus RH facilitant ainsi notre visibilité sur le parcours des collaborateurs », explique Laurent Villemagne, Vice President, Group HR Information Systems & Controlling.

À propos de Faurecia

Fondé en 1997, Faurecia est devenu un acteur majeur de l’industrie automobile mondiale. Avec 266 sites industriels, 39 centres de R&D et 114 000 collaborateurs répartis dans 35 pays, Faurecia est un leader mondial dans ses quatre domaines d’activités : Seating, Interiors, Clarion Electronics et Clean Mobility. Son offre technologique forte fournit aux constructeurs automobiles des solutions pour le Cockpit du futur et la Mobilité durable. En 2020, le Groupe a réalisé un chiffre d’affaires de 14,7 milliards d’euros.

À propos de SAP

La stratégie de SAP vise à aider chaque organisation à fonctionner en “entreprise intelligente”. En tant que leader du marché des logiciels d’application d’entreprise, nous aidons les entreprises de toutes tailles et de tous secteurs à opérer au mieux : 77 % des transactions commerciales mondiales entrent en contact avec un système SAP®. Nos technologies de Machine Learning, d’Internet des objets (IoT) et d’analytique avancées aident nos clients à transformer leurs activités en “entreprises intelligentes”. SAP permet aux personnes et aux organisations d’avoir une vision approfondie de leur business et favorise la collaboration afin qu’elles puissent garder une longueur d’avance sur leurs concurrents. Nous simplifions la technologie afin que les entreprises puissent utiliser nos logiciels comme elles le souhaitent – sans interruption. Notre suite d’applications et de services de bout en bout permet aux clients privés et publics de 25 secteurs d’activité dans le monde de fonctionner de manière rentable, de s’adapter en permanence et de faire la différence. Avec son réseau mondial de clients, partenaires, employés et leaders d’opinion, SAP aide le monde à mieux fonctionner et à améliorer la vie de chacun. Pour plus d’informations, visitez le site .

Contacts presse :

Daniel Margato, Directeur Communication : 06 64 25 38 08 –
Pauline Barriere :–
SAP News Center. Suivez SAP sur Twitter : @SAPNews.

The post Faurecia choisit SAP SuccessFactors pour développer une nouvelle expérience collaborateur appeared first on SAP France News.

Source de l’article sur

CI/CD Meets Oracle Transactional Business Intelligence

Oracle Transactional Business Intelligence (OTBI) is built on the power of Oracle’s industry-leading business intelligence tool Oracle Business Intelligence Enterprise Edition (OBIEE). This allows users to build powerful data visualization with real-time data that highlights data patterns and encourages data exploration instead of delivering static flat reports. OTBI provides users a wide variety of data visualization options from standard graphs to advanced visuals such as trellis, treemaps, performance tiles, KPIs, and others.

Introducing a CI/CD Solution for OTBI

FlexDeploy has an innovative CI/CD solution for managing the build and deployment of OTBI WebCatalog objects across the pipeline. Using FlexDeploy’s partial deployment model, developers can assemble related catalog objects into packages, build them from source control or a development environment, and deploy them into the target environments.

Source de l’article sur DZONE

SAP, acteur de la lutte contre le changement climatique

Le changement climatique est un sujet brûlant. Pour y remédier, tous les pays du monde se doivent d’agir et de mener des actions coordonnées. Depuis plus de 10 ans, SAP s’emploie à agir contre le changement climatique. L’éditeur a fixé ses premiers objectifs de baisse des émissions de CO2 dès 2009. Bien qu’il ait une nouvelle fois été classé numéro 1 des éditeurs de logiciels dans les indices de durabilité du Dow Jones cette année, le plus dur reste à accomplir.

Dans le cadre du mouvement #FridaysForFuture, des milliers d’étudiants descendent dans la rue chaque vendredi pour manifester en faveur de la protection du climat. Le rapport annuel sur l’écart entre les besoins et les perspectives en matière de réduction des émissions qui vient d’être publié a tiré une autre sonnette d’alarme avant la conférence sur le climat de cette semaine. En comparant la tendance des émissions de gaz à effet de serre à leur niveau souhaitable, le rapport souligne que ces émissions doivent baisser de 7,6 % par an sur la prochaine décennie pour que l’humanité parvienne à contenir l’élévation des températures du globe à 1,5 °C. Un réchauffement supérieur à 1,5 degré entraînerait des phénomènes climatiques plus fréquents et plus intenses, à l’image des vagues de chaleur et des tempêtes observées ces dernières années, et ferait planer de graves menaces sur les populations, les pays, l’environnement, mais aussi les entreprises.

Favoriser l’action pour le climat via les solutions SAP

Pour lutter contre les dommages causés par le changement climatique, SAP s’appuie sur la numérisation. Ce faisant, l’éditeur aide ses clients à réduire leurs émissions de CO2 et à contribuer à l’objectif de développement durable numéro 13 des Nations unies, à savoir Mesures relatives à la lutte contre les changements climatiques.

« Le principal levier de SAP se traduit par son portefeuille de produits, qui permet aux clients d’agir de manière positive sur le plan économique, environnemental et social », explique Daniel Schmid, directeur du développement durable de SAP. « Avec plus de 437 000 clients à son actif, notre entreprise dispose d’un énorme potentiel pour changer les choses. »

Une partie de ce potentiel a déjà été réalisée en collaboration avec les clients.

Lors dialogue consacré aux aspects stratégiques du développement durable qui s’est tenu au siège de SAP en septembre, Hanno Schoklitsch, fondateur et PDG de Kaiserwetter, a parlé de la façon dont son entreprise recourt à l’Internet des Objets (IdO) et l’intelligence artificielle (IA) pour accélérer la transition vers les énergies vertes. Il a présenté le dernier bilan d’ARISTOTELES, plateforme IdO optimisée par SAP Cloud Platform, qui s’appuie sur des analyses de données intelligentes et des simulations de données prédictives pour améliorer les investissements et le financement en faveur de l’efficacité énergétique.

Il est essentiel d’amplifier cet impact. En conséquence, les équipes SAP s’activent à faire évoluer les solutions SAP qui aident à transformer la mobilité urbaine et qui soutiennent les réseaux de chaîne logistique pour qu’ils gagnent en transparence, dans l’objectif de passer à une économie circulaire « zéro déchet » et de lutter contre la pollution plastique.

Donner l’exemple : efforts consentis en interne

Cliquez pour agrandir

Tout en cherchant à élaborer des produits et services qui aident les clients à déployer des modèles économiques durables, SAP s’engage à réduire ses propres émissions de gaz à effet de serre. Des mesures ont déjà été mises en place pour atteindre cet objectif.

SAP s’est fixé l’objectif de réduire de 85 % ses émissions de CO2 tout au long de la chaîne de création de valeur d’ici 2050, un objectif qui s’inscrit dans l’initiative « Science Based Targets ». Dans ce cadre-là, l’éditeur a récemment renforcé son engagement en adoptant les objectifs de réduction des émissions de 1,5 ºC dans l’optique d’une future neutralité carbone. Pour atteindre la neutralité carbone dans ses propres activités d’ici 2025, SAP s’appuie sur une stratégie en trois volets : éviterréduirecompenser.

  • Éviter : dans la mesure du possible, SAP s’emploie à éviter les émissions de gaz à effet de serre. Il s’agit d’une priorité absolue, qui passe par exemple par le recours aux télécommunications virtuelles en lieu et place des vols d’affaires.
  • Réduire : au cas où les émissions de gaz à effet de serre ne pourraient pas être évitées, SAP cherche à renforcer l’efficacité et réduire tous les types d’émissions, par exemple avec l’efficacité énergétique des bâtiments, les opérations des centres de données, le covoiturage, l’autopartage et la mobilité connectée.
  • Compenser : SAP a élargi ses modèles de compensation des déplacements professionnels. Dans le cas des vols d’affaires, un prix interne du carbone a été établi pour compenser les émissions de CO2, et SAP a émis des cartes de carburant neutres en carbone pour toutes les voitures de fonction.

En 2009, SAP s’est fixé l’objectif de ramener les émissions de gaz à effet de serre aux niveaux de 2000 d’ici 2020. Ce résultat a été atteint dès la fin 2017 alors que les effectifs de SAP ont été multipliés par quatre au cours de cette période. L’année dernière, SAP a fait tomber ses émissions à 310 kilotonnes, dépassant ainsi son objectif annuel de réduire le nombre de ses émissions de CO2 à moins de 333 kilotonnes. Les chiffres exacts sont disponibles dans le rapport intégré annuel. En outre, un tableau de bord interne de durabilité permet aux employés de découvrir la répartition de ces rejets par pays, par site et par secteur d’activité.

Tous les centres de données et établissements SAP fonctionnent aux énergies vertes depuis 2014. En outre, SAP introduit progressivement un système de management environnemental conforme à la norme ISO 14001 sur les sites SAP du monde entier.  En 2019, 55 sites SAP avaient déjà obtenu la certification ISO 14001.  Un système de management de l’énergie certifié ISO 50001 est intégré aux systèmes de gestion existants de certains sites, tels que le siège de SAP à Walldorf et St. Leon-Rot, pour améliorer en continu la performance énergétique de l’entreprise.

La mobilité joue également un rôle clé dans la lutte contre le changement climatique. C’est la raison pour laquelle le profil des employés qui font la navette entre domicile et lieu de travail est pris en compte dans le calcul des émissions de CO2 de SAP. Avec son large éventail de voitures électriques, à ses systèmes de transport public spéciaux ainsi qu’à son vif soutien du vélo et du covoiturage, SAP propose différents moyens de se déplacer et de voyager de manière durable. Les résultats de l’enquête 2018 sur les trajets domicile-travail ont révélé une tendance positive : en 2018, les émissions quotidiennes de CO2 en lien avec ces trajets ont diminué de 4,7 % par rapport à l’année précédente. L’utilisation de la voiture a baissé de 5 %, celle des transports publics est restée stable et le recours au vélo a augmenté de 15 %. Le travail à domicile a progressé de 11 % d’une année sur l’autre.

Si les émissions de CO2 ne peuvent être évitées ou réduites, auquel cas SAP investit dans des projets de compensation d’émissions et reçoit en retour des crédits carbone des projets sponsorisés. L’accent est mis sur des projets ambitieux, tels que le Fonds Livelihoods qui conjugue reboisement et amélioration des moyens de subsistance des communautés rurales et satisfait aux critères du label GOLD standard du WWF (World Wide Fund for Nature). À ce jour, 2,3 millions d’arbres ont été plantés, dont 1 million entre 2018 et 2019, par exemple, dans le cadre du projet « Réserve de forêt de Kikonda » en Ouganda.

Agir au niveau individuel

Chacun de nous, nous pouvons de bien des façons changer les choses, tant dans notre vie personnelle que professionnelle. Les employés de SAP sont désireux d’apporter une contribution positive. Selon l’enquête annuelle menée auprès du personnel, 93 % des employés conviennent qu’il est important pour SAP de poursuivre sa stratégie de développement durable. Plus de 200 personnes s’engagent comme défenseurs du développement durable au sein d’un réseau mondial pour encourager le changement et inspirer leurs collègues.

Le programme SAP Next-Gen, mis en place en collaboration avec les laboratoires d’innovation technologique de l’ONU, soutient une série de hackathons en faveur de l’action climat, Reboot the Earth, dont la finale aura lieu lors du sommet pour le climat à New York prévu en septembre prochain. De nombreux employés de SAP sur différents sites se sont portés volontaires pour jouer le rôle de juges dans les concours locaux.

Les lignes directrices de la programmation durable compilées par l’équipe Performance and Scalability de SAP ont également valeur d’exemple. Selon Detlef Thom, expert produit SAP en développement : « Pour les développeurs de logiciels et les architectes, appuyer le développement durable et contribuer à l’informatique écoresponsable implique de concevoir des programmes logiciels qui utilisent efficacement les ressources informatiques tout en économisant de l’énergie. Cela devient encore plus impératif si l’on tient compte du grand nombre de transactions commerciales que gère un système SAP à l’échelle mondiale. »

The post SAP, acteur de la lutte contre le changement climatique appeared first on SAP France News.

Source de l’article sur