Articles

Qu'est-ce qu'une base de données vectorielle SQL ?

Une base de données vectorielle SQL est un système de gestion de données qui permet de stocker, gérer et extraire des informations.

## Les modèles de langue larges (LLMs) ont facilité de nombreuses tâches, comme la création de chatbots, la traduction de langues, la résumé de texte et bien d’autres. Autrefois, nous devions écrire des modèles pour différentes tâches et il y avait toujours le problème de leur performance. Maintenant, nous pouvons facilement effectuer la plupart des tâches grâce aux LLMs. Cependant, les LLMs ont quelques limites lorsqu’ils sont appliqués à des cas d’utilisation du monde réel. Ils manquent d’informations spécifiques ou à jour, ce qui entraîne un phénomène appelé hallucination où le modèle génère des résultats incorrects ou imprévisibles. Les bases de données vectorielles se sont avérées très utiles pour atténuer le problème d’hallucination dans les LLMs en fournissant une base de données de données spécifiques au domaine que les modèles peuvent référencer. Cela réduit les instances de réponses inexactes ou incohérentes.

Coding is an essential part of LLMs. It is used to create the algorithms that are used to train the model. It also helps in creating the architecture of the model, which is the way the model is structured. The code helps the model to understand the data and make predictions. It also helps in optimizing the performance of the model by making sure that it is using the right parameters and hyperparameters.

Les grandes modèles linguistiques (LLMs) ont rendu de nombreuses tâches plus faciles, comme la création de chatbots, la traduction de langue, le résumé de texte et bien d’autres. Dans le passé, nous devions écrire des modèles pour différentes tâches, et il y avait toujours le problème de leur performance. Maintenant, nous pouvons facilement faire la plupart des tâches avec l’aide des LLMs. Cependant, les LLMs ont quelques limitations lorsqu’elles sont appliquées à des cas d’utilisation du monde réel. Elles manquent d’informations spécifiques ou à jour, ce qui conduit à un phénomène appelé hallucination où le modèle génère des résultats incorrects ou imprévisibles.

Les bases de données vectorielles se sont avérées très utiles pour atténuer le problème de l’hallucination dans les LLMs en fournissant une base de données de données spécifiques au domaine que les modèles peuvent référencer. Cela réduit les cas de réponses inexactes ou incohérentes.

Le codage est une partie essentielle des LLMs. Il est utilisé pour créer les algorithmes qui sont utilisés pour entraîner le modèle. Il aide également à créer l’architecture du modèle, qui est la façon dont le modèle est structuré. Le code aide le modèle à comprendre les données et à faire des prédictions. Il aide également à optimiser les performances du modèle en s’assurant qu’il utilise les bons paramètres et hyperparamètres.

Source de l’article sur DZONE

Déployer GitLab sur AWS EC2 avec Walrus

Déployer GitLab sur AWS EC2 avec Walrus est une tâche complexe, mais pas impossible. Découvrez comment le faire dans ce tutoriel !

  • An AWS Account with access to EC2 and VPC.

  • A Walrus Account.

  • H2 : Walrus, plateforme open-source de gestion d’applications, équipe votre équipe avec des modèles conçus pour optimiser les meilleures pratiques. Dans cet article, nous vous guiderons à travers le processus de création d’un modèle AWS GitLab et déploiement d’un serveur GitLab sur une instance EC2 AWS.

  • An AWS account with permissions to create and manage EC2 instances.

  • A Walrus account with access to the Walrus CLI.

  • Creating the Template

    The first step is to create a template for your GitLab server. This template will define the configuration of the server, such as the instance type, the operating system, and the software packages that will be installed. You can use the Walrus CLI to create a template from scratch, or you can use one of the pre-built templates provided by Walrus.

    Une plateforme de gestion d’applications open source appelée Walrus équipe votre équipe de modèles conçus pour optimiser les meilleures pratiques. Dans cet article, nous vous guiderons à travers le processus de création d’un modèle AWS GitLab et de déploiement d’un serveur GitLab sur une instance EC2 AWS.

    Prérequis

    1. Un dépôt GitHub ou GitLab pour stocker le modèle.

    2. Un compte AWS avec les autorisations nécessaires pour créer et gérer des instances EC2.

    3. Un compte Walrus avec accès à la ligne de commande Walrus.

    Créer le modèle

    La première étape consiste à créer un modèle pour votre serveur GitLab. Ce modèle définira la configuration du serveur, telles que le type d’instance, le système d’exploitation et les logiciels qui seront installés. Vous pouvez utiliser la ligne de commande Walrus pour créer un modèle à partir de zéro ou utiliser l’un des modèles préconstruits fournis par Walrus.

    Une fois que vous avez créé le modèle, vous pouvez le stocker dans votre dépôt GitHub ou GitLab. Vous pouvez ensuite utiliser le logiciel Walrus pour déployer le modèle sur votre instance EC2. Le logiciel Walrus vous permet de définir des paramètres tels que la taille de l’instance, le système d’exploitation et les packages logiciels à installer. Une fois que vous avez configuré tous les paramètres, vous pouvez cliquer sur le bouton « Déployer » pour déployer le modèle sur votre instance EC2.

    Une fois le déploiement terminé, vous pouvez accéder à votre serveur GitLab en utilisant l’adresse IP publique de votre instance EC2. Vous pouvez également utiliser le logiciel Walrus pour surveiller l’état de votre serveur GitLab et mettre à jour le modèle si nécessaire. Vous pouvez également utiliser le logiciel Walrus pour sauvegarder et restaurer votre serveur GitLab en cas de problème.

    Source de l’article sur DZONE

    Comparaison d'orchestration de conteneurs: Kubernetes vs ECS Amazon

    Comprendre les différences entre Kubernetes et ECS Amazon peut être un défi. Nous allons comparer leurs avantages et leurs inconvénients pour vous aider à choisir l’orchestration de conteneurs qui vous convient le mieux.

    Kubernetes vs. Amazon ECS : Comparez les deux mécanismes les plus étendus pour gérer et mettre à l’échelle des microservices

    Kubernetes is an open source platform that can be used to manage containerized applications. It is a powerful tool that can be used to deploy, scale, and manage a wide variety of applications. It is also highly extensible and can be used to deploy applications in a variety of environments. Kubernetes also provides a comprehensive set of APIs and tools for managing and monitoring applications. Additionally, it provides a powerful database for storing and managing application data.

    Amazon ECS est un service de cloud computing qui permet de gérer et de déployer des applications conteneurisées. Il est très facile à utiliser et peut être configuré rapidement. Il est également très flexible et peut être utilisé pour déployer des applications dans un large éventail d’environnements. Amazon ECS offre également un ensemble complet d’API et d’outils pour gérer et surveiller les applications. De plus, il fournit une base de données puissante pour stocker et gérer les données des applications.

    Les deux outils Kubernetes et Amazon ECS ont leurs avantages et leurs inconvénients. Kubernetes est open source et très extensible, mais il peut être difficile à configurer et à gérer. Amazon ECS est plus facile à configurer et à gérer, mais il est moins flexible que Kubernetes. De plus, Amazon ECS n’offre pas de base de données intégrée pour stocker et gérer les données des applications, ce qui peut être un problème pour les applications qui nécessitent une gestion des données plus avancée.

    En fin de compte, le choix entre Kubernetes et Amazon ECS dépendra des besoins spécifiques de votre entreprise. Si vous avez besoin d’une solution open source et extensible, alors Kubernetes est le bon choix. Si vous recherchez une solution plus simple à configurer et à gérer, alors Amazon ECS est la meilleure option. Dans tous les cas, une base de données robuste est nécessaire pour stocker et gérer les données des applications. Quelle que soit la solution choisie, elle doit être capable de fournir une base de données fiable et sûre pour stocker les données des applications.

    Comme vous le savez peut-être, de nombreux outils d’orchestration existent pour gérer et mettre à l’échelle les microservices. Mais, dans ce cas, nous allons parler des deux mécanismes les plus étendus : Kubernetes vs Amazon ECS.

    Dans cet article, nous allons examiner chacun d’eux individuellement. Nous allons parler de leurs avantages et de leurs inconvénients. Finalement, en fonction des besoins de votre entreprise, nous déciderons lequel est le bon outil d’orchestration de conteneur pour votre application web.

    Kubernetes est une plateforme open source qui peut être utilisée pour gérer les applications conteneurisées. C’est un outil puissant qui peut être utilisé pour déployer, mettre à l’échelle et gérer une large variété d’applications. Il est également très extensible et peut être utilisé pour déployer des applications dans une variété d’environnements. Kubernetes fournit également un ensemble complet d’API et d’outils pour gérer et surveiller les applications. De plus, il fournit une base de données puissante pour stocker et gérer les données des applications.

    Les avantages et

    Source de l’article sur DZONE

    Maîtrise de l'ingénierie des modèles de langage AI.

    La maîtrise de l’ingénierie des modèles de langage AI est une compétence essentielle pour les développeurs qui souhaitent créer des applications modernes.

    Ingénierie de prompt, un aspect vital pour tirer le plein potentiel des modèles de langage IA

    2. Testing

    Testing is an important part of prompt engineering. It helps to identify any errors or inconsistencies in the instructions given to the model. This can be done by running the model on a set of test data and comparing the results with the desired output. This helps to identify any potential issues and allows for adjustments to be made accordingly.

    3. Iterative Process

    Prompt engineering is an iterative process. After testing, adjustments can be made to the instructions given to the model. This can include changing the wording, adding additional information, or providing more specific instructions. The process is repeated until the desired output is achieved.

    Limitations of Prompt Engineering

    Prompt engineering is not without its limitations. It can be difficult to write clear and specific instructions that are tailored to the task at hand. Additionally, the process can be time-consuming and requires a certain level of expertise in order to achieve the desired results. Finally, prompt engineering is not a one-size-fits-all solution and may not be suitable for all tasks.

    Potential Applications of Prompt Engineering

    Prompt engineering has a wide range of potential applications. It can be used to improve the accuracy of AI language models, such as natural language processing (NLP) and machine translation. It can also be used to create more engaging and interactive user experiences, such as chatbots and virtual assistants. Finally, prompt engineering can be used to develop more accurate and contextually relevant responses from AI systems.

    Principes de l’ingénierie de prompt

    1. Écrire des instructions claires et spécifiques

    Le succès de l’ingénierie de prompt commence par fournir des instructions claires et non ambiguës. Clair ne signifie pas nécessairement une courte description. Être spécifique sur la sortie souhaitée aide le modèle à comprendre plus précisément la tâche. Par exemple, demandez à LLA d’être un expert dans le domaine que vous demandez.

    2. Test

    Le test est une partie importante de l’ingénierie de prompt. Il permet d’identifier toutes les erreurs ou incohérences dans les instructions données au modèle. Cela peut être fait en faisant fonctionner le modèle sur un jeu de données de test et en comparant les résultats avec la sortie souhaitée. Cela permet d’identifier tout problème potentiel et permet d’effectuer des ajustements en conséquence.

    3. Processus itératif

    L’ingénierie de prompt est un processus itératif. Après le test, des ajustements peuvent être apportés aux instructions données au modèle. Cela peut inclure le changement du mot, l’ajout d’informations supplémentaires ou la fourniture d’instructions plus spécifiques. Le processus est répété jusqu’à ce que la sortie souhaitée soit obtenue.

    Limites de l’ingénierie de prompt

    L’ingénierie de prompt n’est pas sans ses limites. Il peut être difficile d’écrire des instructions claires et spécifiques qui sont adaptées à la tâche à accomplir. De plus, le processus peut être long et nécessite un certain niveau d’expertise pour obtenir les résultats souhaités. Enfin, l’ingénierie de prompt n’est pas une solution unique et peut ne pas être adaptée à toutes les tâches.

    Applications
    Source de l’article sur DZONE

    Vulnérabilités de sécurité dans CasaOS

    Les vulnérabilités de sécurité sont un problème majeur dans CasaOS. Nous allons examiner les différentes façons dont ces problèmes peuvent être résolus.

    ## Dans le cadre de notre effort continu pour améliorer notre technologie Clean Code et la sécurité de l’écosystème open-source, notre équipe R&D est toujours à l’affût de nouvelles vulnérabilités de sécurité 0-day dans des logiciels populaires.

    To ensure the security of our users, we conducted a thorough testing process to identify and fix the vulnerabilities. We followed the industry standard for testing and security protocols, including static and dynamic analysis, fuzzing, and penetration testing. We also collaborated with the CasaOS team to ensure the security of their product.

    Dans le cadre de nos efforts continus visant à améliorer notre technologie Clean Code et la sécurité de l’écosystème open-source, notre équipe R&D est toujours à la recherche de nouvelles vulnérabilités de sécurité 0-day dans les logiciels les plus répandus.

    Récemment, nous avons découvert deux vulnérabilités critiques dans une solution de cloud personnelle nommée CasaOS. CasaOS peut être installé sur n’importe quelle machine grâce à Docker et est livré avec des périphériques NAS pour les utilisateurs finaux tels que le ZimaBoard ou le X86Pi. Les utilisateurs déploient CasaOS pour stocker leurs données personnelles sur des appareils qu’ils peuvent faire confiance et y accéder depuis n’importe où.

    Pour assurer la sécurité de nos utilisateurs, nous avons mené un processus de test approfondi pour identifier et corriger les vulnérabilités. Nous avons suivi les normes de l’industrie pour les tests et les protocoles de sécurité, y compris l’analyse statique et dynamique, le fuzzing et les tests d’intrusion. Nous avons également collaboré avec l’équipe CasaOS pour assurer la sécurité de leur produit.

    Source de l’article sur DZONE

    Discussions limitées avec systèmes distribués.

    Les systèmes distribués offrent des discussions limitées, mais avec des avantages considérables pour les utilisateurs.

    L’art d’équilibrer le contrôle et l’accessibilité

    Database

    The Airport realized that they needed to balance control and accessibility. To do this, they created a database with all the information related to the flight. This database included the flight number, arrival time, departure time, and the number of passengers. This allowed the Airport to have a better understanding of the situation and to make better decisions. For example, they could decide which flights should be parked closer to the terminal building and which ones should be parked further away. This way, they could ensure that passengers had a shorter wait time for their luggage.

    Conclusion

    Houston Airport was able to solve their problem by reframing it and creating a database. By balancing control and accessibility, they were able to make better decisions and reduce the wait time for passengers. This is a great example of how technology can be used to solve real-world problems. It is also a reminder that sometimes the best solution is not always the most obvious one.

    Contexte

    L’aéroport de Houston avait un gros problème : les passagers se plaignaient du temps qu’il fallait pour que leurs bagages arrivent à la salle d’embarquement après l’atterrissage de l’avion. L’aéroport a investi des millions pour résoudre ce problème et améliorer le processus, embaucher plus de personnel et introduire de nouvelles technologies. Ils ont finalement réussi à réduire le temps d’attente à 7 minutes mais les plaintes continuaient. L’aéroport a alors réalisé qu’ils étaient arrivés à un point où l’optimisation du processus/design n’était plus optimale. Ils ont alors fait quelque chose de différent : ils ont reformulé le problème.

    Base de données

    L’aéroport a compris qu’il devait trouver un équilibre entre le contrôle et l’accessibilité. Pour cela, ils ont créé une base de données contenant toutes les informations liées aux vols : numéro de vol, heure d’arrivée, heure de départ et nombre de passagers. Cela leur a permis d’avoir une meilleure compréhension de la situation et de prendre de meilleures décisions. Par exemple, ils pouvaient décider quels vols devaient être stationnés plus près de la salle d’embarquement et lesquels devaient être stationnés plus loin. Ainsi, ils pouvaient s’assurer que les passagers attendent moins longtemps pour récupérer leurs bagages.

    Conclusion

    L’aéroport de Houston a pu résoudre son problème en reformulant le problème et en créant une base de données. En trouvant un équilibre entre le contrôle et l’accessibilité, ils ont pu prendre de meilleures décisions et réduire le temps d’attente des passagers. C’est un excellent exemple de la façon dont la technologie peut être utilisée pour résoudre des problèmes du monde réel. C’est également un rappel que parfois, la meilleure solution n’est pas toujours la plus évidente.

    Source de l’article sur DZONE

    Réduire les Hallucinations LLM

    Réduire les Hallucinations LLM est une tâche difficile, mais pas impossible. Nous allons découvrir ensemble les moyens pour y parvenir.

    LLM Hallucination : Les Effets de l’IA Générative

    One approach to reducing AI hallucinations is to simplify the architecture of the model. This involves reducing the number of layers and neurons, as well as reducing the complexity of the activation functions. Additionally, regularization techniques such as dropout and weight decay can be used to reduce overfitting. 

    L’hallucination LLM fait référence au phénomène où de grands modèles linguistiques tels que des chatbots ou des systèmes de vision informatique génèrent des sorties non sensées ou inexactes qui ne correspondent pas aux vrais modèles ou objets. Ces faux résultats de l’IA proviennent de divers facteurs. Le surajustement à des données d’entraînement limitées ou biaisées est un grand coupable. Une grande complexité du modèle contribue également, permettant à l’IA de percevoir des corrélations qui n’existent pas.

    Les grandes entreprises qui développent des systèmes génératifs d’IA prennent des mesures pour résoudre le problème des hallucinations de l’IA, bien que certains experts pensent que l’élimination complète des faux résultats ne soit pas possible.

    Une approche pour réduire les hallucinations de l’IA consiste à simplifier l’architecture du modèle. Cela implique de réduire le nombre de couches et de neurones, ainsi que la complexité des fonctions d’activation. De plus, des techniques de régularisation telles que le dropout et le déclin des poids peuvent être utilisées pour réduire le surajustement.

    Source de l’article sur DZONE

    Comment se démarquer lors d'entretiens comportementaux en ingénierie

    Pour se démarquer lors d’un entretien comportemental en ingénierie, il est important de se préparer et de montrer ses compétences. Faites une bonne impression et démontrez vos capacités !

    ## Comment utiliser le format STAR pour répondre aux questions comportementales

    Après avoir mené des entretiens avec des centaines d’ingénieurs et de gestionnaires d’ingénierie chez Meta, Twitter et d’autres entreprises, j’ai remarqué des modèles communs dans la façon dont les candidats abordaient les questions d’entretien comportemental. Alors que de nombreux candidats se sont bien débrouillés sur le plan technique, ils ont souvent eu du mal à articuler leur travail, leurs réalisations et leurs défis lors d’un entretien, ce qui a entraîné des refus.

    Cet article aborde les conseils pour utiliser efficacement le format STAR largement connu pour répondre aux questions comportementales. Il aborde les pièges courants et fournit des exemples illustratifs pour aider les candidats à comprendre comment utiliser le format STAR pour communiquer clairement et se démarquer. C’est le cadre qui m’a aidé à passer avec succès des entretiens de direction technique chez Databricks, Twitter, Airbnb, Plaid, Notion, Uber et d’autres entreprises.

    Le format STAR est une méthode très utile pour répondre aux questions comportementales lors des entretiens. Il permet aux candidats de structurer leurs réponses et de fournir des informations complètes et précises. La méthode STAR est basée sur quatre étapes : Situation, Tâche, Action et Résultat. Chaque étape est essentielle pour répondre à une question comportementale et fournir une réponse complète.

    Lorsque vous répondez à une question comportementale en utilisant la méthode STAR, vous devez commencer par décrire la situation ou le contexte dans lequel vous avez travaillé. Vous devez ensuite expliquer la tâche à laquelle vous avez été confronté et comment vous l’avez abordée. Ensuite, vous devez expliquer les actions que vous avez prises pour résoudre le problème. Enfin, vous devez expliquer les résultats obtenus grâce à votre travail. Il est important de se rappeler que les résultats doivent être quantifiables et mesurables.

    Par exemple, si un recruteur vous demande comment vous avez contribué à améliorer la base de données d’une entreprise, vous pouvez utiliser la méthode STAR pour répondre à cette question. Vous pouvez commencer par expliquer la situation : «J’ai été embauché par une entreprise pour améliorer sa base de données.» Vous pouvez ensuite expliquer la tâche : «Ma tâche consistait à analyser la base de données existante et à identifier les lacunes.» Ensuite, vous pouvez expliquer les actions que vous avez prises : «J’ai analysé la base de données et j’ai identifié plusieurs lacunes. J’ai ensuite mis en œuvre des modifications pour améliorer la qualité et la performance de la base de données.» Enfin, vous pouvez expliquer les résultats obtenus : «Grâce à mes modifications, la base de données a été améliorée de 10 % en termes de qualité et de performance.»

    En conclusion, l’utilisation du format STAR est un excellent moyen pour les candidats de structurer leurs réponses aux questions comportementales lors des entretiens. Il permet aux candidats de communiquer clairement leurs réalisations et leurs

    Source de l’article sur DZONE

    Former des données avec ChatGPT : Guide pour développeurs

    Apprenez à former des données avec ChatGPT et découvrez comment les développeurs peuvent tirer le meilleur parti de cette technologie puissante !

    ## Le lancement de ChatGPT par OpenAI a été transformateur pour l’intelligence conversationnelle AI. Impressionnant hors de la boîte, les capacités de ChatGPT sont intrinsèquement limitées par ses données d’entraînement fixes de 2021. Pour les développeurs de logiciels et les entreprises technologiques, l’entraînement de ChatGPT sur des jeux de données personnalisés est essentiel pour créer des assistants IA personnalisés qui évoluent avec votre entreprise.

    Dans ce guide complet, nous explorerons les meilleures pratiques pour les équipes de logiciels afin de former des modèles ChatGPT personnalisés à l’aide de techniques telles que le réglage fin et la lecture interactive MEMWALKER.

    Testing is a critical part of training ChatGPT models. It’s important to evaluate the performance of your model against a test dataset to ensure that it’s accurately predicting the desired output. Testing also helps identify any potential issues with the model, such as overfitting or underfitting. To get the most out of testing, it’s important to use a variety of metrics, such as accuracy, precision, recall, and F1 score.

    Le lancement de ChatGPT par OpenAI a été transformateur pour l’intelligence conversationnelle IA. Impressionnant à l’état brut, les capacités de ChatGPT sont intrinsèquement limitées par ses données d’entraînement fixes de 2021. Pour les développeurs de logiciels et les entreprises technologiques, l’entraînement de ChatGPT sur des ensembles de données personnalisés est essentiel pour créer des assistants IA adaptés à votre entreprise.

    Dans ce guide complet, nous explorerons les meilleures pratiques pour les équipes de logiciels afin de former des modèles ChatGPT personnalisés à l’aide de techniques telles que le réglage fin et la lecture interactive MEMWALKER.

    Le test est une étape essentielle de l’entraînement des modèles ChatGPT. Il est important d’évaluer les performances de votre modèle sur un jeu de données de test pour s’assurer qu’il prédit correctement la sortie souhaitée. Les tests permettent également d’identifier tout problème potentiel avec le modèle, tel que le surapprentissage ou le sous-apprentissage. Pour tirer le meilleur parti des tests, il est important d’utiliser une variété de métriques, telles que la précision, la précision, le rappel et le score F1.

    Source de l’article sur DZONE

    Développement Dirigé par l'Observabilité pour LLMs

    Le développement dirigé par l’observabilité (DDO) est une approche innovante pour améliorer le développement et le déploiement des logiciels à base de microservices et de logiciels légers (LLMs).

    Notre industrie est à ses débuts d’une explosion dans le logiciel utilisant les MLM, ainsi qu’une (séparée, mais liée) révolution dans la façon dont les ingénieurs écrivent et exécutent du code, grâce à l’intelligence générative.

    Data is the key to unlocking the potential of this new world. Without data, LLMs and generative AI are nothing more than empty promises. Data is the fuel that powers the engine of ML-driven software development. It is the lifeblood of our industry, and it is essential that we understand how to use it effectively.

    Nous sommes à l’aube d’une explosion du logiciel utilisant des modèles d’apprentissage automatique (MLM) et d’une révolution de la façon dont les ingénieurs écrivent et exécutent le code, grâce à l’intelligence artificielle générative.

    De nombreux ingénieurs logiciels rencontrent pour la première fois les MLM, tandis que de nombreux ingénieurs en apprentissage automatique sont directement exposés pour la première fois aux systèmes de production. Ces deux types d’ingénieurs se retrouvent plongés dans un nouveau monde déroutant – un monde où un problème de production particulier qu’ils ont peut-être rencontré occasionnellement dans leur carrière est maintenant au centre de l’attention.

    Les données sont la clé pour déverrouiller le potentiel de ce nouveau monde. Sans données, les MLM et l’intelligence artificielle générative ne sont rien de plus que des promesses vides. Les données sont le carburant qui alimente le moteur du développement logiciel basé sur l’apprentissage automatique. C’est le sang vital de notre industrie et il est essentiel que nous comprenions comment l’utiliser efficacement.

    Source de l’article sur DZONE