Articles

Qu’est-ce que la modélisation des données ?

La modélisation des données correspond au processus de création de diagrammes de flux de données. Lors de la création d’une structure de base de données, qu’elle soit nouvelle ou non, le concepteur commence par élaborer un diagramme illustrant la façon dont les données entreront et sortiront de la base de données. Ce diagramme est utilisé pour définir les caractéristiques des formats et structures de données, ainsi que des fonctions de gestion de base de données, afin de répondre efficacement aux exigences des flux de données. Une fois la base de données créée et déployée, le modèle de données servira de documentation expliquant les motifs de création de la base de données ainsi que la manière dont les flux de données ont été conçus.

Le modèle de données résultant de ce processus établit une structure de relations entre les éléments de données dans une base de données et sert de guide d’utilisation des données. Les modèles de données sont un élément fondamental du développement et de l’analyse de logiciels. Ils fournissent une méthode standardisée pour définir et mettre en forme les contenus de base de données de manière cohérente dans les systèmes, ce qui permet à diverses applications de partager les mêmes données.


Pourquoi la modélisation des données est-elle importante ?

Un modèle de données complet et optimisé permet de créer une base de données logique et simplifiée qui élimine la redondance, réduit les besoins en stockage et permet une récupération efficace. Elle dote également tous les systèmes de ce que l’on appelle une « source unique de la vérité », ce qui est essentiel pour assurer des opérations efficaces et garantir une conformité vérifiable aux réglementations et exigences réglementaires. La modélisation des données est une étape clé dans deux fonctions vitales d’une entreprise numérique.

Projets de développement logiciel (nouveaux ou personnalisations) mis en place par le service informatique

Avant de concevoir et de créer un projet logiciel, il doit exister une vision documentée de ce à quoi ressemblera le produit final et de son comportement. Une grande partie de cette vision concerne l’ensemble de règles de gestion qui régissent les fonctionnalités souhaitées. L’autre partie est la description des données : les flux de données (ou le modèle de données) et la conception de la base de données qui les prendra en charge.

La modélisation des données est une trace de cette vision et fournit une feuille de route pour les concepteurs de logiciels. Grâce à la définition et à la documentation complètes des flux de données et de la base de données, ainsi qu’au développement des systèmes conformément à ces spécifications, les systèmes devraient être en mesure de fournir les fonctionnalités attendues requises pour garantir l’exactitude des données (en supposant que les procédures ont été correctement suivies).

Analyses et visualisation (ou Business Intelligence) : un outil de prise de décision clé pour les utilisateurs

Avec l’augmentation des volumes de données et le nombre croissant d’utilisateurs, les entreprises ont besoin de transformer les données brutes en informations exploitables pour prendre des décisions. Sans surprise, la demande en analyse des données a augmenté de façon spectaculaire. La visualisation des données rend les données encore plus accessibles aux utilisateurs en les présentant sous forme graphique.

Les modèles de données actuels transforment les données brutes en informations utiles qui peuvent être transposées dans des visualisations dynamiques. La modélisation des données prépare les données pour l’analyse : nettoyage des données, définition des mesures et des dimensions, amélioration des données par l’établissement de hiérarchies, la définition d’unités et de devises et l’ajout de formules.


Quels sont les types de modélisation des données ?

Les trois types de modèles de données clés sont le modèle relationnel, le modèle dimensionnel et le modèle entité-association. Il en existe d’autres qui ne sont pas communément utilisés, notamment les types hiérarchique, réseau, orienté objet et à plusieurs valeurs. Le type de modèle définit la structure logique, à savoir comment les données sont stockées, organisées et extraites.

  1. Type relationnel : bien qu’« ancien » dans son approche, le modèle de base de données le plus couramment utilisé aujourd’hui est le relationnel, qui stocke les données dans des enregistrements au format fixe et organise les données dans des tables avec des lignes et des colonnes. Le type de modèle de données le plus basique comporte deux éléments : des mesures et des dimensions. Les mesures sont des valeurs numériques, telles que les quantités et le chiffre d’affaires, utilisées dans les calculs mathématiques comme la somme ou la moyenne. Les dimensions peuvent correspondre à des valeurs numériques ou textuelles. Elles ne sont pas utilisées dans les calculs et incluent des descriptions ou des emplacements. Les données brutes sont définies comme une mesure ou une dimension. Autres termes utilisés dans la conception de base de données relationnelle : « relations » (la table comportant des lignes et des colonnes), « attributs » (colonnes), « nuplets » (lignes) et « domaine » (ensemble de valeurs autorisées dans une colonne). Bien qu’il existe d’autres termes et exigences structurelles qui définissent une base de données relationnelle, le facteur essentiel concerne les relations définies dans cette structure. Les éléments de données communs (ou clés) relient les tables et les ensembles de données. Les tables peuvent également être explicitement liées, comme une relation parent/enfant, y compris les relations dites un-à-un (one-to-one), un-à-plusieurs (one-to-many) ou plusieurs-à-plusieurs (many-to-many).
  2. Type dimensionnel : moins rigide et structurée, l’approche dimensionnelle privilégie une structure de données contextuelle davantage liée à l’utilisation professionnelle ou au contexte. Cette structure de base de données est optimisée pour les requêtes en ligne et les outils d’entreposage de données. Les éléments de données critiques, comme une quantité de transaction par exemple, sont appelés « faits » et sont accompagnés d’informations de référence appelées « dimensions », telles que l’ID de produit, le prix unitaire ou la date de la transaction. Une table de faits est une table primaire dans un modèle dimensionnel. La récupération peut être rapide et efficace (avec des données pour un type d’activité spécifique stockées ensemble), mais l’absence de relations peut compliquer l’extraction analytique et l’utilisation des données. Étant donné que la structure des données est liée à la fonction qui produit et utilise les données, la combinaison de données produites par divers systèmes (dans un entrepôt de données, par exemple) peut poser des problèmes.
  3. Modèle entité-association (modèle E-R) : un modèle E-R représente une structure de données métier sous forme graphique contenant d’une part des boîtes de différentes formes pour représenter des activités, des fonctions ou des « entités », et d’autre part des lignes qui représentent des dépendances, des relations ou des « associations ». Le modèle E-R est ensuite utilisé pour créer une base de données relationnelle dans laquelle chaque ligne représente une entité et comporte des zones qui contiennent des attributs. Comme dans toutes les bases de données relationnelles, les éléments de données « clés » sont utilisés pour relier les tables entre elles.

Quels sont les trois niveaux d’abstraction des données ?

Il existe de nombreux types de modèles de données, avec différents types de mises en forme possibles. La communauté du traitement des données identifie trois types de modélisation permettant de représenter les niveaux de pensée au fur et à mesure que les modèles sont développés.

Modèle de données conceptuel

Ce modèle constitue une « vue d’ensemble » et représente la structure globale et le contenu, mais pas le détail du plan de données. Il s’agit du point de départ standard de la modélisation des données qui permet d’identifier les différents ensembles de données et flux de données dans l’organisation. Le modèle conceptuel dessine les grandes lignes pour le développement des modèles logiques et physiques, et constitue une part importante de la documentation relative à l’architecture des données.

Modèle de données logique

Le deuxième niveau de détail est le modèle de données logique. Il est étroitement lié à la définition générale du « modèle de données » en ce sens qu’il décrit le flux de données et le contenu de la base de données. Le modèle logique ajoute des détails à la structure globale du modèle conceptuel, mais n’inclut pas de spécifications pour la base de données en elle-même, car le modèle peut être appliqué à diverses technologies et divers produits de base de données. (Notez qu’il peut ne pas exister de modèle conceptuel si le projet est lié à une application unique ou à un autre système limité).

Modèle de données physique

Le modèle de base de données physique décrit comment le modèle logique sera réalisé. Il doit contenir suffisamment de détails pour permettre aux techniciens de créer la structure de base de données dans les matériels et les logiciels pour prendre en charge les applications qui l’utiliseront. Il va sans dire que le modèle physique est spécifique à un système logiciel de base de données en particulier. Il peut exister plusieurs modèles physiques dérivés d’un seul et même modèle logique si plusieurs systèmes de base de données seront utilisés.

Processus et techniques de modélisation des données

La modélisation des données est par essence un processus descendant qui débute par l’élaboration du modèle conceptuel pour établir la vision globale, puis se poursuit avec le modèle logique pour s’achever par la conception détaillée contenue dans le modèle physique.

L’élaboration du modèle conceptuel consiste principalement à mettre des idées sous la forme d’un graphique qui ressemble au diagramme des flux de données conçu par un développeur.

Les outils de modélisation des données modernes peuvent vous aider à définir et à créer vos modèles de données logiques et physiques et vos bases de données. Voici quelques techniques et étapes classiques de modélisation des données :

  • Déterminez les entités et créez un diagramme entité-association. Les entités sont considérées comme des « éléments de données qui intéressent votre entreprise ». Par exemple, « client » serait une entité. « Vente » en serait une autre. Dans un diagramme entité-association, vous documentez la manière dont ces différentes entités sont liées les unes aux autres dans votre entreprise, et les connexions qui existent entre elles.
  • Définissez vos faits, mesures et dimensions. Un fait est la partie de vos données qui indique une occurrence ou une transaction spécifique, comme la vente d’un produit. Vos mesures sont quantitatives, comme la quantité, le chiffre d’affaires, les coûts, etc. Vos dimensions sont des mesures qualitatives, telles que les descriptions, les lieux et les dates.
  • Créez un lien de vue de données à l’aide d’un outil graphique ou via des requêtes SQL. Si vous ne maîtrisez pas SQL, l’option la plus intuitive sera l’outil graphique : il vous permet de faire glisser des éléments dans votre modèle et de créer visuellement vos connexions. Lors de la création d’une vue, vous avez la possibilité de combiner des tables et d’autres vues dans une sortie unique. Lorsque vous sélectionnez une source dans la vue graphique et que vous la faites glisser dans une source déjà associée à la sortie, vous pouvez soit la joindre, soit créer une union de ces tables.

Les solutions analytiques modernes peuvent également vous aider à sélectionner, filtrer et connecter des sources de données à l’aide d’un affichage graphique de type glisser-déposer. Des outils avancés sont disponibles pour les experts en données qui travaillent généralement au sein des équipes informatiques. Toutefois, les utilisateurs peuvent également créer leurs propres présentations en créant visuellement un modèle de données et en organisant des tables, des graphiques, des cartes et d’autres objets pour élaborer une présentation basée sur des analyses de données.


Exemples de modélisation des données

Pour toute application, qu’elle soit professionnelle, de divertissement, personnelle ou autre, la modélisation des données est une étape préalable nécessaire à la conception du système et à la définition de l’infrastructure nécessaire à sa mise en œuvre. Cela concerne tout type de système transactionnel, de suite d’applications de traitement des données, ou tout autre système qui collecte, crée ou utilise des données.

La modélisation des données est essentielle pour l’entreposage de données car un entrepôt de données est un référentiel de données provenant de plusieurs sources, qui contiennent probablement des données similaires ou liées, mais disponibles sous des formats différents. Il est nécessaire de mapper en premier lieu les formats et la structure de l’entrepôt afin de déterminer comment manipuler chaque ensemble de données entrant pour répondre aux besoins de la conception de l’entrepôt, afin que les données soient utiles pour l’analyse et l’exploration de données. Le modèle de données est alors un catalyseur important pour les outils analytiques, les systèmes d’information pour dirigeants (tableaux de bord), l’exploration de données et l’intégration à tous les systèmes et applications de données.

Dans les premières étapes de conception de n’importe quel système, la modélisation des données est une condition préalable essentielle dont dépendent toutes les autres étapes pour établir la base sur laquelle reposent tous les programmes, fonctions et outils. Le modèle de données est comparable à un langage commun permettant aux systèmes de communiquer selon leur compréhension et leur acceptation des données, comme décrit dans le modèle. Dans le monde actuel de Big Datad’apprentissage automatiqued’intelligence artificiellede connectivité Cloudd’IdO et de systèmes distribués, dont l’informatique en périphérie, la modélisation des données s’avère plus importante que jamais.


Évolution de la modélisation des données

De façon très concrète, la modélisation des données est apparue en même temps que le traitement des données, le stockage de données et la programmation informatique, bien que le terme lui-même n’ait probablement été utilisé qu’au moment où les systèmes de gestion de base de données ont commencé à évoluer dans les années 1960. Il n’y a rien de nouveau ou d’innovant dans le concept de planification et d’architecture d’une nouvelle structure. La modélisation des données elle-même est devenue plus structurée et formalisée au fur et à mesure que davantage de données, de bases de données et de variétés de données sont apparues.

Aujourd’hui, la modélisation des données est plus essentielle que jamais, étant donné que les techniciens se retrouvent face à de nouvelles sources de données (capteurs IdO, appareils de localisation, flux de clics, réseaux sociaux) et à une montée des données non structurées (texte, audio, vidéo, sorties de capteurs brutes), à des volumes et à une vitesse qui dépassent les capacités des systèmes traditionnels. Il existe désormais une demande constante de nouveaux systèmes, de nouvelles structures et techniques innovantes de bases de données, et de nouveaux modèles de données pour rassembler ces nouveaux efforts de développement.


Quelle est la prochaine étape de la modélisation des données ?

La connectivité des informations et les grandes quantités de données provenant de nombreuses sources disparates (capteurs, voix, vidéo, emails, etc.) étendent le champ d’application des projets de modélisation pour les professionnels de l’informatique. Internet est, bien sûr, l’un des moteurs de cette évolution. Le Cloud est en grand partie la solution car il s’agit de la seule infrastructure informatique suffisamment grande, évolutive et agile pour répondre aux exigences actuelles et futures dans un monde hyperconnecté.

Les options de conception de base de données évoluent également. Il y a dix ans, la structure dominante de la base de données était relationnelle, orientée lignes et utilisait la technologie traditionnelle de l’espace disque. Les données du grand livre ou de la gestion des stocks d’un système ERP standard étaient stockées dans des dizaines de tables différentes qui doivent être mises à jour et modélisées. Aujourd’hui, les solutions ERP modernes stockent des données actives dans la mémoire à l’aide d’une conception en colonnes, ce qui réduit considérablement le nombre de tables et accroît la vitesse et l’efficacité.

Pour les professionnels du secteur, les nouveaux outils en libre-service disponibles aujourd’hui continueront à s’améliorer. De nouveaux outils seront également introduits pour rendre la modélisation et la visualisation des données encore plus simples et plus collaboratives.


Synthèse

Un modèle de données bien pensé et complet est la clé du développement d’une base de données véritablement fonctionnelle, utile, sécurisée et exacte. Commencez par le modèle conceptuel pour présenter tous les composants et fonctions du modèle de données. Affinez ensuite ces plans dans un modèle de données logique qui décrit les flux de données et définit clairement les données nécessaires et la manière dont elles seront acquises, traitées, stockées et distribuées. Le modèle de données logique donne lieu au modèle de données physique spécifique à un produit de base de données et constitue le document de conception détaillé qui guide la création de la base de données et du logiciel d’application.

Une bonne modélisation des données et une bonne conception de base de données sont essentielles au développement de bases de données et de systèmes d’application fonctionnels, fiables et sécurisés, qui fonctionnent bien avec les entrepôts de données et les outils analytiques, et facilitent l’échange de données entre les partenaires et entre les suites d’application. Des modèles de données bien pensés aident à garantir l’intégrité des données, ce qui rend les données de votre entreprise encore plus précieuses et fiables.


Découvrez les outils modernes de modélisation des données de SAP Data Warehouse Cloud

En savoir plus


 

The post Qu’est-ce que la modélisation des données ? appeared first on SAP France News.

Source de l’article sur sap.com

CERTFR-2021-ALE-008 : Multiples vulnérabilités dans Exim (05 mai 2021)

Le 5 mai 2021, Qualys a publié un bulletin de sécurité contenant 21 vulnérabilités affectant le serveur mail Exim. Quatre de ces vulnérabilités permettent une élévation de privilège et trois une exécution de code arbitraire. Ces vulnérabilités affectent toutes les versions de Exim …
Source de l’article sur CERT-FR

Intermarché choisit les solutions SAP Ariba pour optimiser sa chaîne de valeur et répondre aux attentes des consommateurs

Intermarché, enseigne alimentaire du Groupement Les Mousquetaires s’appuie sur les solutions de procurement Ariba de SAP pour assurer la fluidité et l’efficacité de sa chaine d’approvisionnement et de distribution, afin de répondre au mieux aux enjeux contemporains et aux attentes toujours grandissantes des consommateurs. Grâce à un outil intégré, les différents corps de métiers peuvent collaborer via une seule interface et selon des processus communs, ce qui permet une vision globale sur l’ensemble des flux et un suivi de tous les indicateurs de performance, favorisant la prise de décision et une réponse rapide et fiable aux besoins de l’entreprise et de ses clients.

Le contexte de crise sanitaire et les différentes formes de restrictions de mobilité qui ont traversé le territoire cette dernière année ont montré combien il était important pour une entreprise d’assurer la solidité et la fiabilité de sa chaîne d’approvisionnement.

L’épidémie de la Covid-19 a également accéléré les évolutions des comportements des consommateurs, et il tient à cœur à Intermarché de répondre présent face à ces nouveaux enjeux, c’est pourquoi le groupe a opéré sa transformation. La digitalisation de la vie professionnelle s’accompagne aussi de la digitalisation des modes de consommation, avec un recours plus fréquent au e-commerce. Les enjeux sociétaux et environnementaux font désormais partie intégrante de l’équation lors des choix de consommation des clients. L’hygiène et les impératifs sanitaires ont été exacerbés par la crise. Suite à la crise économique qui résulte de l’épidémie, les consommateurs sont plus que jamais à la recherche de prix très attractifs.

Une solution pour assurer la bonne traçabilité des produits marques de distributeurs et répondre mieux aux attentes des consommateurs.

La stratégie d’Intermarché repose sur six piliers. Le relai « Producteurs & Commerçants », qui est l’ADN d’Intermarché, implique de disposer d’un outil industriel efficient et réactif. Le retravail constant et l’optimisation des recettes, afin de répondre aux attentes des consommateurs désireux de manger mieux. Communiquer sur les avantages des produits Intermarché pour les consommateurs, et leur apporter toutes les informations qu’ils recherchent. Des activations promotionnelles pour répondre aux attentes des clients sur les prix des produits. Des prix bas toute l’année et une forte compétitivité prix, surtout au regard de la crise économique que nous traversons. Une transformation pour plus d’agilité, afin de s’adapter au monde en constante évolution.

La qualité de l’alimentation est plus que jamais au cœur des préoccupations des consommateurs, notamment via les gammes de produits bio. Les solutions Procurement SAP Ariba permettent à Intermarché d’assurer la bonne traçabilité de ses produits, et de répondre aux attentes des clients désireux d’en savoir plus sur la qualité et l’origine des produits qu’ils consomment. Pour assurer cette traçabilité, Intermarché peut s’appuyer sur la méthode et l’efficacité de l’outil Ariba. Celui-ci permet de suivre et analyser les données, afin de piloter et optimiser la chaine d’approvisionnement en fonction des demandes des consommateurs. Enfin, la fluidité des informations entre les collaborateurs et les fournisseurs de production est assurée par l’intégration à cet outil unique.

Une transformation engagée grâce à un outil unique adapté à l’ensemble des profils et corps de métier.

Pour faire face à la croissance du nombre d’appels d’offre et du nombre de fournisseurs, la complexité grandissante des références et l’impératif de toujours réduire le time to market pour répondre aux attentes des consommateurs, il était crucial pour Intermarché de pouvoir s’appuyer sur un outil intégré de pilotage, c’est pourquoi le groupe a choisi les solutions Achats SAP Ariba.

Le programme de transformation d’Intermarché se base sur cinq objectifs :

  1. Améliorer la qualité et l’échange de l’information entre les services et avec le fournisseur.
  2. Disposer de l’agilité nécessaire pour anticiper les événements et problématiques, tels que les renouvellements d’appels d’offres etc.
  3. Homogénéiser les processus d’approvisionnement.
  4. Piloter tous les services et processus, et mettre en place des KPIs.
  5. Améliorer le time to market; les distributeurs producteurs se doivent d’être rapides pour répondre immédiatement aux demandes des consommateurs.

Proposant une vaste variété de produits en marques de distributeurs (frais, épicerie, alimentaire hors import), les 59 usines intégrées au Groupement Les Mousquetaires et les 600 fournisseurs d’Intermarché collaborent au travers d’un outil unique, pour gérer les achats, identifier et anticiper les besoins, suivre l’historique, simplifier les appels d’offre, piloter l’entreprise via des processus homogènes et des indicateurs de performance communs.

Aujourd’hui, les collaborateurs Intermarché se sont approprié l’outil, et l’implantation d’Ariba est une réussite. La collaboration est facilitée par l’intégration sur un outil unique des différents profils et corps de métier qui interviennent tout au long de la chaine de valeurs. Le time to market a été multiplié par 2,25, avec un time to market moyen passé de 18 mois à 8 mois pour les marques de distributeurs. Le groupe ne cache pas ses ambitions de l’abaisser à 6 voire 3 mois en profitant pleinement des capacités proposées par les solutions SAP Ariba.

« La réussite de notre programme de transformation repose sur trois facteurs majeurs. D’abord, mettre les équipes au cœur du projet, les questionner sur les besoins et défis, pour les intégrer à la mise en place de la solution. Ensuite, rester simples et pragmatiques, et ne pas perdre de vue les objectifs de départ. Enfin, anticiper et accompagner le changement, en parallèle de l’élaboration de l’outil, est une clé de réussite. Les collaborateurs et les fournisseurs ont pris en main cet outil, ce qui est un très bon indicateur du succès du projet. Il y a énormément de positif dans ce qui est en train de se passer. » témoignent Matthieu Bidan, chef d’entreprise Intermarché à Gratentour (31) et  Guillaume Delpech, en charge de la direction des Achats Marques Propres Intermarché – Netto.

À propos de SAP

La stratégie de SAP vise à aider chaque organisation à fonctionner en “entreprise intelligente”. En tant que leader du marché des logiciels d’application d’entreprise, nous aidons les entreprises de toutes tailles et de tous secteurs à opérer au mieux : 77 % des transactions commerciales mondiales entrent en contact avec un système SAP®. Nos technologies de Machine Learning, d’Internet des objets (IoT) et d’analytique avancées aident nos clients à transformer leurs activités en “entreprises intelligentes”. SAP permet aux personnes et aux organisations d’avoir une vision approfondie de leur business et favorise la collaboration afin qu’elles puissent garder une longueur d’avance sur leurs concurrents. Nous simplifions la technologie afin que les entreprises puissent utiliser nos logiciels comme elles le souhaitent – sans interruption. Notre suite d’applications et de services de bout en bout permet aux clients privés et publics de 25 secteurs d’activité dans le monde de fonctionner de manière rentable, de s’adapter en permanence et de faire la différence. Avec son réseau mondial de clients, partenaires, employés et leaders d’opinion, SAP aide le monde à mieux fonctionner et à améliorer la vie de chacun.

Pour plus d’informations, visitez le site www.sap.com .

Contacts presse SAP
Daniel Margato, Directeur Communication : 06 64 25 38 08 – daniel.margato@sap.com
Pauline Barriere : 06.13.73.93.11 – presse-sap@publicisconsultants.com
SAP News Center. Suivez SAP sur Twitter : @SAPNews.

 

The post Intermarché choisit les solutions SAP Ariba pour optimiser sa chaîne de valeur et répondre aux attentes des consommateurs appeared first on SAP France News.

Source de l’article sur sap.com

Accenture et SAP vont aider les entreprises à accélérer leur transformation en matière de développement durable, à créer de nouvelles sources de valeur et à se positionner comme leader en matière d’économie circulaire

NEW YORK et WALLDORF – Accenture (NYSE : ACN) et SAP SE (NYSE : SAP) étendent leur partenariat de plusieurs décennies pour aider les entreprises à intégrer le développement durable à l’ensemble de leurs activités, de la stratégie à l’exécution, afin de dégager une nouvelle valeur au sein de leurs entreprises et de leurs chaînes de valeur et d’approvisionnement.

En associant la technologie SAP aux services de développement durable d’Accenture et à leur vaste connaissance du secteur, les partenaires élargissent leur alliance afin de créer conjointement de nouvelles solutions qui permettront aux entreprises d’accélérer la dé-carbonisation complète de leurs chaînes d’approvisionnement et d’obtenir leur part des 4 500 milliards de dollars de croissance économique que l’économie circulaire pourrait générer*.

Grâce à ce partenariat étendu, Accenture et SAP prévoient de co-innover et de co-développer la nouvelle solution de SAP pour la production et la conception responsables, qui comprend des fonctionnalités aidant les entreprises à intégrer des mesures de durabilité dans leurs chaînes de valeur et d’approvisionnement, en mettant l’accent sur la conception et la fabrication des produits. Grâce à des données intégrées provenant de l’ensemble des opérations, les entreprises peuvent mieux concevoir et fabriquer des produits produisant moins de déchets, plus recyclables et contenant davantage de matières recyclées. Cela contribuera également à réduire le coût croissant de la conformité induit par les nouvelles réglementations en matière d’emballage et de responsabilité élargie des producteurs (REP).

« Notre collaboration permettra aux clients de SAP, qui comprennent 92% des Forbes Global 2000, d’utiliser leurs systèmes centraux pour les aider à mener leur programme de développement durable, à optimiser leurs performances ESG et à atteindre leurs objectifs », a déclaré Julie Sweet, chief executive officer d’Accenture. « Cette collaboration élargie s’appuie sur notre longue histoire avec SAP – notamment notre partenariat conjoint avec le Pacte mondial des Nations unies et 3M – et sur notre engagement commun à favoriser la réalisation des objectifs de développement durable. »

Accenture soutient également l’initiative Climate 21 de SAP, qui permet aux entreprises de tout secteur d’activité d’utiliser des outils d’analyse pour mesurer et minimiser les émissions de dioxyde de carbone (CO2) et réduire l’empreinte carbone tout au long du cycle de vie des produits. Par exemple, les recherches montrent que les émissions des fournisseurs en amont sont en moyenne plus de cinq fois supérieures à celles des opérations directes**. Grâce à l’ajout de mesures de durabilité dans l’ensemble de la chaîne d’approvisionnement de bout en bout, les entreprises disposent d’une vision intégrée des économies environnementales et de l’impact des coûts et peuvent plus facilement optimiser leurs opérations.

« Pour réussir à lutter contre la plus grande menace qui pèse sur notre monde aujourd’hui, nous devons collaborer à tous les niveaux de l’entreprise et de la société « , a déclaré Christian Klein, chief executive officer de SAP. « En s’appuyant sur notre partenariat de longue date et de confiance, SAP et Accenture unissent leurs forces pour aider nos clients à réaliser une croissance à long terme de manière durable. Nous apportons une visibilité sur l’impact environnemental de l’ensemble de la chaîne de valeur, en fournissant aux entreprises les informations dont elles ont besoin pour prendre les bonnes mesures et accélérer leur transition vers l’économie circulaire. »

Le mois dernier, SAP et Accenture ont donné le coup d’envoi d’un programme d’accélération mondial axé sur le développement durable au sein de SAP.iO Foundries. Le programme Sustainable Future, la plus grande cohorte de SAP.iO à ce jour, vise à aider les startups B2B en phase de démarrage à favoriser la transformation numérique et l’innovation dans quatre domaines cibles : le suivi et le commerce du carbone, l’efficacité des ressources, le suivi et l’atténuation des risques climatiques et l’économie circulaire. Treize startups ont été sélectionnées pour travailler avec SAP.iO Foundries Berlin et Munich, en tandem avec des experts d’Accenture et des entreprises leaders dans divers secteurs.

« La mise en œuvre de la gestion durable de la chaîne d’approvisionnement et des principes de l’économie circulaire est une tâche incroyablement difficile pour les entreprises, compte tenu de la diversité des questions ESG et des multiples parties prenantes concernées », a déclaré Bjoern Stengel,  senior research analyst, Worldwide Business Consulting and ESG Business Services chez IDC. « Selon les recherches d’IDC, les questions relatives au processus de création de valeur des entreprises (conception et gestion du cycle de vie des produits, approvisionnement en matières premières, etc.) sont les sujets d’ESG qui généreront le plus de demande à court terme. Cette nouvelle offre d’Accenture et de SAP permet aux clients de générer des informations critiques, fondées sur des données, de bout en bout, qui prennent en compte les paramètres non financiers nécessaires pour construire des chaînes d’approvisionnement durables et aider les entreprises à créer une valeur partagée. »

Cette collaboration est la dernière d’une série d’initiatives d’Accenture et de SAP qui aident les entreprises à tirer de la valeur du développement durable. Le Pacte mondial des Nations unies, avec le soutien d’Accenture et de SAP SE, en faveur des objectifs de développement durable (ODD), a lancé SDG Ambition en janvier 2020 et a publié les guides SDG Ambition et Integration en septembre 2020. Ensemble, grâce au SDG Ambition Accelerator qui a débuté en février 2021, plus de 600 entreprises dans 65 pays sont en train de monter en compétences pour appliquer ces outils à leurs activités.

À propos d’Accenture

Accenture est un des leaders mondiaux des services aux entreprises et administrations, avec une expertise de pointe dans les domaines du numérique, du cloud et de la sécurité. Combinant une expérience unique et une expertise spécialisée dans plus de 40 secteurs d’activité, Accenture s’appuie sur le plus grand réseau international de centres de technologie avancée et d’opérations intelligentes pour offrir à ses clients des services Strategy & Consulting, Interactive, Technology et Operations. Avec 537 000 employés, Accenture s’engage chaque jour auprès de ses clients dans plus de 120 pays, à réaliser la promesse de la technologie alliée à l’ingéniosité humaine. Accenture s’appuie sur le changement pour générer de la valeur et créer une réussite partagée avec ses clients, ses collaborateurs, ses actionnaires, ses partenaires et ses communautés.
Site Internet : www.accenture.com/fr

À propos de SAP

La stratégie de SAP vise à aider chaque organisation à fonctionner en “entreprise intelligente”. En tant que leader du marché des logiciels d’application d’entreprise, nous aidons les entreprises de toutes tailles et de tous secteurs à opérer au mieux : 77 % des transactions commerciales mondiales entrent en contact avec un système SAP®. Nos technologies de Machine Learning, d’Internet des objets (IoT) et d’analytique avancées aident nos clients à transformer leurs activités en “entreprises intelligentes”. SAP permet aux personnes et aux organisations d’avoir une vision approfondie de leur business et favorise la collaboration afin qu’elles puissent garder une longueur d’avance sur leurs concurrents. Nous simplifions la technologie afin que les entreprises puissent utiliser nos logiciels comme elles le souhaitent – sans interruption. Notre suite d’applications et de services de bout en bout permet aux clients privés et publics de 25 secteurs d’activité dans le monde de fonctionner de manière rentable, de s’adapter en permanence et de faire la différence. Avec son réseau mondial de clients, partenaires, employés et leaders d’opinion, SAP aide le monde à mieux fonctionner et à améliorer la vie de chacun.

Pour plus d’informations, visitez le site www.sap.com .

Contacts presse SAP
Daniel Margato, Directeur Communication : 06 64 25 38 08 – daniel.margato@sap.com
Pauline Barriere : 06.13.73.93.11 – presse-sap@publicisconsultants.com
SAP News Center. Suivez SAP sur Twitter : @SAPNews.

The post Accenture et SAP vont aider les entreprises à accélérer leur transformation en matière de développement durable, à créer de nouvelles sources de valeur et à se positionner comme leader en matière d’économie circulaire appeared first on SAP France News.

Source de l’article sur sap.com

SAP et Amadeus pilotent le conseil industriel pour la recherche en intelligence artificielle

 

“Cette initiative est née de notre profonde conviction que les entreprises, quelle que soit l’industrie, peuvent tirer parti du partage d’experiences.”

 

Il est ingénieur de formation, issu de Polytech’Nice-Sophia. Elle est diplômée en mathématiques appliquées et a validé une thèse en théorie de l’optimisation. Ils mènent leur carrière dans de grandes entreprises technologiques internationales. Et dirigent le Industrial Council of Artificial Intelligence Research (ICAIR). Olena Kushakovska (SAP) et Jean-Michel Sauvage (Amadeus) pilotent ensemble ICAIR depuis 2020. Ils ont une ambition claire pour l’organisation : accélérer le travail sur l’IA en mettant l’accent sur le développement durable. A l’occasion du 1er SAP Sustainability Summit, la directrice générale de SAP Labs France et le directeur R&D pour les solutions Revenue Management d’Amadeus se sont prêtés au jeu de l’interview croisée pour nous donner leur vision de l’IA durable.

  1. Quels sont les principaux avantages de l’IA dans votre secteur ?

Olena Kushakovska : Chez SAP, nous permettons à nos clients de devenir des entreprises intelligentes, d’utiliser les données pour bâtir des entreprises plus performantes, plus résilientes, plus rentables, plus agiles et plus durables. Nous mettons tout en œuvre pour que la réalité de l’entreprise intelligente soit pleinement intégrée avec les fonctionnalités d’Intelligence Artificielle.

Jean-Michel Sauvage : L’IA est une technologie majeure qui offre la meilleure utilisation possible des données et fournit un service plus performant, plus efficace, prévisible, personnalisé et à plus forte valeur ajoutée sur l’ensemble de la chaîne.

  1. Quand, pourquoi et comment vous êtes-vous engagé avec ICAIR ?

Olena : Amadeus et SAP sont membres fondateurs de ICAIR. La décision d’aller de l’avant a été prise entre Gilles Floyrac et moi il y a environ 2 ans. Gilles était le président d’Amadeus Nice à l’époque et la région Côte d’Azur venait de décrocher le label 3IA. Son idée était que les entreprises conduisent l’agenda industriel parallèlement au monde universitaire. Plus de 60 entreprises de la zone ont soutenu le projet 3IA. Nous avons contacté les entreprises que nous pensions intéressées (ex. IBM, ARM, NXP, Thales Alenia Space, Orange) et le “Club” est né. La réunion de mise en place entre les responsables de site pour sceller le club s’est tenue chez Amadeus puis la 1ère session de travail a eu lieu chez SAP en juin 2019.

Jean-Michel : Les techniques d’IA n’étant pas spécifiques à la résolution d’un problème, cette initiative est motivée par la forte conviction que les entreprises, même lorsqu’elles travaillent dans différents secteurs, peuvent bénéficier de l’apprentissage et du partage d’expériences sur les défis auxquels elles sont confrontées sur des problèmes techniques similaires.

« Nous nous efforçons d’utiliser l’IA de manière durable et d’atteindre les objectifs de durabilité de l’ONU au sein du secteur. » Olena KUSHAKOVSKA

  1. Qu’est-ce qui est spécial avec ICAIR ?

Jean-Michel : ICAIR se concentre sur la recherche appliquée, et à ce titre, est un moyen de lier la recherche fondamentale et les résultats académiques à leur application dans un environnement industriel.

Olena : ICAIR est à taille humaine, agile, diversifié, industriel, pratico-pratique, avec des cas d’utilisation réels. Des entreprises leaders dans le monde composent le conseil. Pour autant, il y a un faible niveau d’administration, une faible bureaucratie, mais beaucoup de bonne volonté et un grand écosystème. La bienveillance et le soutien sont sans faille, et l’implication continue !

  1. Pourquoi avoir choisi l’IA durable comme thème du programme ICAIR ? 

Jean-Michel : L’IA s’accompagne de défis, tant en termes de technologie, de puissance de calcul, que de biais d’apprentissage, ou de décisions humainement explicables. Nous pensons que l’IA peut être conçue et utilisée de manière durable et apporter de la valeur d’une manière qui respecte la planète et les communautés.

Olena : On questionne souvent l’IA en termes écologique ou éthique. Nous voulons envisager la durabilité dans un contexte beaucoup plus large, celui des objectifs de durabilité des Nations Unies. La durabilité s’entend comme la capacité de notre génération à atteindre ses objectifs, sans compromettre la capacité de la génération future à atteindre les leurs. Et ce, par rapport à toutes les ressources : naturelles, humaines, économiques. Nos efforts se concentrent sur l’IA durable pour atteindre les objectifs des Nations Unies au sein de l’industrie.

  1. Quel est le champ d’application d’ICAIR ?

Jean-Michel : ICAIR a été pensé de telle sorte que des chercheurs d’entreprises de Sophia Antipolis hébergeant des laboratoires de recherche travaillant dans différents contextes industriels, et sur différents sujets, puissent discuter et échanger leurs points de vue sur des questions communes liées à l’utilisation de l’IA dans leurs industries respectives.

Olena : Notre objectif est de travailler sur des projets communs et d’échanger sur les meilleures pratiques en matière d’apprentissage automatique et d’intelligence artificielle. Cela permettra de faire progresser les recherches en matière d’IA. Enfin, nous comptons utiliser notre puissance commune pour promouvoir la Côte d’Azur en tant que berceau de l’IA durable.

  1. Qu’est-ce qui vous motive personnellement ?

Olena : Ma volonté est de promouvoir notre grande collaboration, dans l’écosystème incroyablement riche sur le plan technologique et intellectuel de la Côte d’Azur, en montrant à nos maisons-mères que cet endroit est vraiment exceptionnel, et y développer une véritable communauté autour de l’IA. Je veux aussi que la France et l’Europe obtiennent la place qu’elles méritent dans le monde en ce qui concerne l’IA, en veillant à ce que l’IA soit utilisée à bon escient, que la Côte d’Azur soit identifiée comme l’endroit idéal pour l’IA durable, et enfin que les gens ne craignent plus l’IA.

Jean-Michel : Je suis un passionné d’aviation et d’informatique. Heureusement pour moi, les voyages et l’aviation en particulier sont des domaines pleins de défis combinatoires, très complexes à résoudre et à optimiser. Chez Amadeus, nous sommes déjà pleinement engagés dans le déploiement de l’IA. Nous sommes également engagés depuis de nombreuses années dans le développement de systèmes ouverts et interopérables, car nous pensons que c’est en combinant les meilleurs services « atomiques » que nous apporterons une plus grande valeur ajoutée à nos clients, à l’industrie du voyage et aux voyageurs. Mais nous savons aussi que, comme toute évolution de ce genre, elle a besoin de temps, d’expérience, de tests et d’apprentissage. L’IA s’accompagne de nombreuses questions et défis sans réponse. Avec ICAIR, nous faisons partie de l’apprentissage, de l’enseignement, et nous voulons y répondre de la bonne manière.

 

 

 

Les membres sont des entreprises internationales avec des sites sur la Côte d’Azur et menant des recherches en IA :

  • Accenture,
  • ACRI-ST,
  • AIRFRANCE KLM,
  • Amadeus,
  • ARM,
  • Hewlett Packard Enterprise,
  • IBM,
  • NXP Semiconductors,
  • Orange,
  • Renault Software Labs,
  • SAP Labs France,
  • STMicroelectronics,
  • Thales Alenia Space.

Le programme touche l’ensemble de l’écosystème du label 3IA de la Côte d’Azur :

  • Académiques : Institut 3IA, UCA (Université Côte d’Azur), Ecoles, Centres de Recherche
  • Secteurs d’activité : ICAIR, ClusterIA
  • Institutions : MIA, OTESIA, EuropIA
  • Associations : Telecom Valley, Pôle SCS

Des initiatives liées à l’IA lancées par ces acteurs soutiennent la dynamique territoriale de la Côte d’Azur. Elles se rapportent aux objectifs de développement durable des Nations unies et constituent le champ d’application du programme « IA durable ».

En savoir plus : ICAIR – Industrial Council of Artificial Intelligence Research

The post SAP et Amadeus pilotent le conseil industriel pour la recherche en intelligence artificielle appeared first on SAP France News.

Source de l’article sur sap.com

Qu’est-ce qu’un Data Warehouse ?

Un data warehouse (entrepôt de données) est un système de stockage numérique qui connecte et harmonise de grandes quantités de données provenant de nombreuses sources différentes. Il a pour but d’alimenter la Business Intelligence (BI), le reporting et l’analyse, ainsi que soutenir la conformité aux exigences réglementaires afin que les entreprises puissent exploiter leurs données et prendre des décisions intelligentes fondées sur les données. Les data warehouse stockent les données actuelles et historiques dans un seul et même endroit et constituent ainsi une source unique de vérité pour une organisation.

Les données sont envoyées vers un data warehouse à partir de systèmes opérationnels (tels qu’un système ERP ou CRM), de bases de données et de sources externes comme les systèmes partenaires, les appareils IoT, les applications météo ou les réseaux sociaux, généralement de manière régulière. L’émergence du cloud computing a changé la donne. Ces dernières années, le stockage des données a été déplacé de l’infrastructure sur site traditionnelle vers de multiples emplacements, y compris sur site, dans le Cloud privé et dans le Cloud public.

Les data warehouse modernes sont conçus pour gérer à la fois les données structurées et les données non structurées, comme les vidéos, les fichiers image et les données de capteurs. Certains utilisent les outils analytiques intégrés et la technologie de base de données in-memory (qui conserve l’ensemble de données dans la mémoire de l’ordinateur plutôt que dans l’espace disque) pour fournir un accès en temps réel à des données fiables et favoriser une prise de décision en toute confiance. Sans entreposage de données, il est très difficile de combiner des données provenant de sources hétérogènes, de s’assurer qu’elles sont au bon format pour les analyses et d’obtenir une vue des données sur le court terme et sur le long terme.

Schéma qui montre ce qu'est un data warehouse


Avantages de l’entreposage de données

Un data warehouse bien conçu constitue la base de tout programme de BI ou d’analyse réussi. Son principal objectif est d’alimenter les rapports, les tableaux de bord et les outils analytiques devenus indispensables aux entreprises d’aujourd’hui. Un entrepôt de données fournit les informations dont vous avez besoin pour prendre des décisions basées sur les données et vous aide à faire les bons choix, que ce soit pour le développement de nouveaux produits ou la gestion des niveaux de stock. Un data warehouse présente de nombreux avantages. En voici quelques-uns :

  • Un meilleur reporting analytique : grâce à l’entreposage de données, les décideurs ont accès à des données provenant de plusieurs sources et n’ont plus besoin de prendre des décisions basées sur des informations incomplètes.
  • Des requêtes plus rapides : les data warehouse sont spécialement conçus pour permettre l’extraction et l’analyse rapides des données. Avec un entrepôt de données, vous pouvez très rapidement demander de grandes quantités de données consolidées avec peu ou pas d’aide du service informatique.
  • Une amélioration de la qualité des données : avant de charger les données dans l’entrepôt de données le système met en place des nettoyages de données afin de garantir que les données sont converties dans un seul et même format dans le but de faciliter les analyses (et les décisions), qui reposent alors sur des données précises et de haute qualité.
  • Une visibilité sur les données historiques : en stockant de nombreuses données historiques, un data warehouse permet aux décideurs d’analyser les tendances et les défis passés, de faire des prévisions et d’améliorer l’organisation au quotidien.

Capture d'écran de la solution SAP Data Warehouse Cloud


Que peut stocker un data warehouse ?

Lorsque les data warehouse sont devenus populaires à la fin des années 1980, ils étaient conçus pour stocker des informations sur les personnes, les produits et les transactions. Ces données, appelées données structurées, étaient bien organisées et mises en forme pour en favoriser l’accès. Cependant, les entreprises ont rapidement voulu stocker, récupérer et analyser des données non structurées, comme des documents, des images, des vidéos, des e-mails, des publications sur les réseaux sociaux et des données brutes issues de capteurs.

Un entrepôt de données moderne peut contenir des données structurées et des données non structurées. En fusionnant ces types de données et en éliminant les silos qui les séparent, les entreprises peuvent obtenir une vue complète et globale sur les informations les plus précieuses.


Termes clés

Il est essentiel de bien comprendre un certain nombre de termes en lien avec les data warehouse. Les plus importants ont été définis ci-dessous. Découvrez d’autres termes et notre FAQ dans notre glossaire.

Data warehouse et base de données

Les bases de données et les data warehouse sont tous deux des systèmes de stockage de données, mais diffèrent de par leurs objectifs. Une base de données stocke généralement des données relatives à un domaine d’activité particulier. Un entrepôt de données stocke les données actuelles et historiques de l’ensemble de l’entreprise et alimente la BI et les outils analytiques. Les data warehouse utilisent un serveur de base de données pour extraire les données présentes dans les bases de données d’une organisation et disposent de fonctionnalités supplémentaires pour la modélisation des données, la gestion du cycle de vie des données, l’intégration des sources de données, etc.

Data warehouse et lac de données

Les data warehouse et les lacs de données sont utilisés pour stocker le Big Data, mais sont des systèmes de stockage très différents. Un data warehouse stocke des données qui ont été formatées dans un but spécifique, tandis qu’un lac de données stocke les données dans leur état brut, non traité, dont l’objectif n’a pas encore été défini. Les entrepôts de données et les lacs de données se complètent souvent. Par exemple, lorsque des données brutes stockées dans un lac s’avèrent utiles pour répondre à une question, elles peuvent être extraites, nettoyées, transformées et utilisées dans un data warehouse à des fins d’analyse. Le volume de données, les performances de la base de données et les coûts du stockage jouent un rôle important dans le choix de la solution de stockage adaptée.

Diagramme qui montre la différence entre un data warehouse et un lac de données

Data warehouse et datamart

Un datamart est une sous-section d’un data warehouse, partitionné spécifiquement pour un service ou un secteur d’activité, comme les ventes, le marketing ou la finance. Certains datamarts sont également créés à des fins opérationnelles autonomes. Alors qu’un data warehouse sert de magasin de données central pour l’ensemble de l’entreprise, un datamart utilise des données pertinentes à un groupe d’utilisateurs désigné. Ces utilisateurs peuvent alors accéder plus facilement aux données, accélérer leurs analyses et contrôler leurs propres données. Plusieurs datamarts sont souvent déployés dans un data warehouse.

Diagramme d'un data mart et de son fonctionnement


Quels sont les composants clés d’un data warehouse ?

Un data warehouse classique comporte quatre composants principaux : une base de données centrale, des outils ETL (extraction, transformation, chargement), des métadonnées et des outils d’accès. Tous ces composants sont conçus pour être rapides afin de vous assurer d’obtenir rapidement des résultats et vous permettre d’analyser les données à la volée.

Diagramme montrant les composants d'un data warehouse

  1. Base de données centrale : une base de données sert de fondement à votre data warehouse. Depuis le départ, on utilisait essentiellement des bases de données relationnelles standard exécutées sur site ou dans le Cloud. Mais en raison du Big Data, du besoin d’une véritable performance en temps réel et d’une réduction drastique des coûts de la RAM, les bases de données in-memory sont en train de monter en puissance.
  2. Intégration des données : les données sont extraites des systèmes source et modifiées pour aligner les informations afin qu’elles puissent être rapidement utilisées à des fins analytiques à l’aide de différentes approches d’intégration des données telles que l’ETL (extraction, transformation, chargement) et les services de réplication de données en temps réel, de traitement en masse, de transformation des données et de qualité et d’enrichissement des données.
  3. Métadonnées : les métadonnées sont des données relatives à vos données. Elles indiquent la source, l’utilisation, les valeurs et d’autres fonctionnalités des ensembles de données présents dans votre data warehouse. Il existe des métadonnées de gestion, qui ajoutent du contexte à vos données, et des métadonnées techniques, qui décrivent comment accéder aux données, définissent leur emplacement ainsi que leur structure.
  4. Outils d’accès du data warehouse : les outils d’accès permettent aux utilisateurs d’interagir avec les données de votre data warehouse. Exemples d’outils d’accès : outils de requête et de reporting, outils de développement d’applications, outils d’exploration de données et outils OLAP.

Architecture de data warehouse 

Auparavant, les data warehouse fonctionnaient par couches, lesquelles correspondaient au flux des données de gestion.

Diagramme de l'architecture d'un data warehouse

Couche de données

Les données sont extraites de vos sources, puis transformées et chargées dans le niveau inférieur à l’aide des outils ETL. Le niveau inférieur comprend votre serveur de base de données, les datamarts et les lacs de données. Les métadonnées sont créées à ce niveau et les outils d’intégration des données, tels que la virtualisation des données, sont utilisés pour combiner et agréger les données en toute transparence.

Couche sémantique

Au niveau intermédiaire, les serveurs OLAP (Online Analytical Processing) et OLTP (Online Transaction Processing) restructurent les données pour favoriser des requêtes et des analyses rapides et complexes.

Couche analytique

Le niveau supérieur est la couche du client frontend. Il contient les outils d’accès du data warehouse qui permettent aux utilisateurs d’interagir avec les données, de créer des tableaux de bord et des rapports, de suivre les KPI, d’explorer et d’analyser les données, de créer des applications, etc. Ce niveau inclut souvent un workbench  ou une zone de test pour l’exploration des données et le développement de nouveaux modèles de données.

Un data warehouse standard comprend les trois couches définies ci-dessus. Aujourd’hui, les entrepôts de données modernes combinent OLTP et OLAP dans un seul système.

Les data warehouse, conçus pour faciliter la prise de décision, ont été essentiellement créés et gérés par les équipes informatiques. Néanmoins, ces dernières années, ils ont évolué pour renforcer l’autonomie des utilisateurs fonctionnels, réduisant ainsi leur dépendance aux équipes informatiques pour accéder aux données et obtenir des informations exploitables. Parmi les fonctionnalités clés d’entreposage de données qui ont permis de renforcer l’autonomie des utilisateurs fonctionnels, on retrouve les suivantes :

  1. La couche sémantique ou de gestion fournit des expressions en langage naturel et permet à tout le monde de comprendre instantanément les données, de définir des relations entre les éléments dans le modèle de données et d’enrichir les zones de données avec de nouvelles informations.
  2. Les espaces de travail virtuels permettent aux équipes de regrouper les connexions et modèles de données dans un lieu sécurisé et géré, afin de mieux collaborer au sein d’un espace commun, avec un ensemble de données commun.
  3. Le Cloud a encore amélioré la prise de décision en permettant aux employés de disposer d’un large éventail d’outils et de fonctionnalités pour effectuer facilement des tâches d’analyse des données. Ils peuvent connecter de nouvelles applications et de nouvelles sources de données sans avoir besoin de faire appel aux équipes informatiques.

 

The Future of Analytics Has Arrived

Click the button below to load the content from YouTube.

The Future of Analytics Has Arrived

Kate Wright, responsable de la Business Intelligence augmentée chez SAP, évoque la valeur d’un data warehouse Cloud moderne.


Les 7 principaux avantages d’un data warehouse Cloud  

Les data warehouse Cloud gagnent en popularité, à juste titre. Ces entrepôts modernes offrent plusieurs avantages par rapport aux versions sur site traditionnelles. Voici les sept principaux avantages d’un data warehouse Cloud :

  1. Déploiement rapide : grâce à l’entreposage de données Cloud, vous pouvez acquérir une puissance de calcul et un stockage de données presque illimités en quelques clics seulement, et créer votre propre data warehouse, datamarts et systèmes de test en quelques minutes.
  2. Faible coût total de possession (TCO) : les modèles de tarification du data warehouse en tant que service (DWaaS) sont établis de sorte que vous payez uniquement les ressources dont vous avez besoin, lorsque vous en avez besoin. Vous n’avez pas besoin de prévoir vos besoins à long terme ou de payer pour d’autres traitements tout au long de l’année. Vous pouvez également éviter les coûts initiaux tels que le matériel coûteux, les salles de serveurs et le personnel de maintenance. Séparer les coûts du stockage des coûts informatiques vous permet également de réduire les dépenses.
  3. Élasticité : un data warehouse Cloud vous permet d’ajuster vos capacités à la hausse ou à la baisse selon vos besoins. Le Cloud offre un environnement virtualisé et hautement distribué capable de gérer d’immenses volumes de données qui peuvent diminuer ou augmenter.
  4. Sécurité et restauration après sinistre : dans de nombreux cas, les data warehouse Cloud apportent une sécurité des données et un chiffrage plus forts que les entrepôts sur site. Les données sont également automatiquement dupliquées et sauvegardées, ce qui vous permet de minimiser le risque de perte de données.
  5. Technologies en temps réel : les data warehouse Cloud basés sur la technologie de base de données in-memory présentent des vitesses de traitement des données extrêmement rapides, offrant ainsi des données en temps réel et une connaissance instantanée de la situation.
  6. Nouvelles technologies : les data warehouse Cloud vous permettent d’intégrer facilement de nouvelles technologies telles que l’apprentissage automatique, qui peuvent fournir une expérience guidée aux utilisateurs fonctionnels et une aide décisionnelle sous la forme de suggestions de questions à poser, par exemple.
  7. Plus grande autonomie des utilisateurs fonctionnels : les data warehouse Cloud offrent aux employés, de manière globale et uniforme, une vue unique sur les données issues de nombreuses sources et un vaste ensemble d’outils et de fonctionnalités pour effectuer facilement des tâches d’analyse des données. Ils peuvent connecter de nouvelles applications et de nouvelles sources de données sans avoir besoin de faire appel aux équipes informatiques.
Capture d'écran de la solution SAP Data Warehouse Cloud
L’entreposage de données prend en charge l’analyse complète des dépenses de l’entreprise par service, fournisseur, région et statut, pour n’en citer que quelques-unes.

Meilleures pratiques concernant l’entreposage des données

Pour atteindre vos objectifs et économiser du temps et de l’argent, il est recommandé de suivre certaines étapes éprouvées lors de la création d’un data warehouse ou l’ajout de nouvelles applications à un entrepôt existant. Certaines sont axées sur votre activité tandis que d’autres s’inscrivent dans le cadre de votre programme informatique global. Vous pouvez commencer avec la liste de meilleures pratiques ci-dessous, mais vous en découvrirez d’autres au fil de vos collaborations avec vos partenaires technologiques et de services.

Meilleures pratiques métier

Meilleures pratiques informatiques

Définir les informations dont vous avez besoin. Une fois que vous aurez cerné vos besoins initiaux, vous serez en mesure de trouver les sources de données qui vous aideront à les combler. La plupart du temps, les groupes commerciaux, les clients et les fournisseurs auront des recommandations à vous faire. 

Surveiller la performance et la sécurité. Les informations de votre data warehouse sont certes précieuses, mais elles doivent quand même être facilement accessibles pour apporter de la valeur à l’entreprise. Surveillez attentivement l’utilisation du système pour vous assurer que les niveaux de performance sont élevés. 

Documenter l’emplacement, la structure et la qualité de vos données actuelles. Vous pouvez ensuite identifier les lacunes en matière de données et les règles de gestion pour transformer les données afin de répondre aux exigences de votre entrepôt.

Gérer les normes de qualité des données, les métadonnées, la structure et la gouvernance. De nouvelles sources de données précieuses sont régulièrement disponibles, mais nécessitent une gestion cohérente au sein d’un data warehouse. Suivez les procédures de nettoyage des données, de définition des métadonnées et de respect des normes de gouvernance.

Former une équipe. Cette équipe doit comprendre les dirigeants, les responsables et le personnel qui utiliseront et fourniront les informations. Par exemple, identifiez le reporting standard et les KPI dont ils ont besoin pour effectuer leurs tâches.

Fournir une architecture agile. Plus vos unités d’affaires et d’entreprise utiliseront les données, plus vos besoins en matière de datamarts et d’entrepôts augmenteront. Une plate-forme flexible s’avérera bien plus utile qu’un produit limité et restrictif. 

Hiérarchiser vos applications de data warehouse. Sélectionnez un ou deux projets pilotes présentant des exigences raisonnables et une bonne valeur commerciale.

Automatiser les processus tels que la maintenance. Outre la valeur ajoutée apportée à la Business Intelligence, l’apprentissage automatique peut automatiser les fonctions de gestion technique du data warehouse pour maintenir la vitesse et réduire les coûts d’exploitation.

Choisir un partenaire technologique compétent pour l’entrepôt de données. Ce dernier doit offrir les services d’implémentation et l’expérience dont vous avez besoin pour la réalisation de vos projets. Assurez-vous qu’il puisse répondre à vos besoins en déploiement, y compris les services Cloud et les options sur site. 

Utiliser le Cloud de manière stratégique. Les unités d’affaires et les services ont des besoins en déploiement différents. Utilisez des systèmes sur site si nécessaire et misez sur des data warehouse Cloud pour bénéficier d’une évolutivité, d’une réduction des coûts et d’un accès sur téléphone et tablette.  

Développer un bon plan de projet. Travaillez avec votre équipe sur un plan et un calendrier réalistes qui rendent possible les communications et le reporting de statut.


En résumé 

Les data warehouse modernes, et, de plus en plus, les data warehouse Cloud, constitueront un élément clé de toute initiative de transformation numérique pour les entreprises mères et leurs unités d’affaires. Les data warehouse exploitent les systèmes de gestion actuels, en particulier lorsque vous combinez des données issues de plusieurs systèmes internes avec de nouvelles informations importantes provenant d’organisations externes.

Les tableaux de bord, les indicateurs de performance clés, les alertes et le reporting répondent aux exigences des cadres dirigeants, de la direction et du personnel, ainsi qu’aux besoins des clients et des fournisseurs importants. Les data warehouse fournissent également des outils d’exploration et d’analyse de données rapides et complexes, et n’ont pas d’impact sur les performances des autres systèmes de gestion.


Pictogramme qui représente un entrepôt de données

Découvrez la solution SAP Data Warehouse Cloud

Unifiez vos données et analyses pour prendre des décisions avisées et obtenir la flexibilité nécessaire pour un contrôle efficace des coûts, notamment grâce à un paiement selon l’utilisation.

En savoir plus


Publié en anglais sur insights.sap.com

The post Qu’est-ce qu’un Data Warehouse ? appeared first on SAP France News.

Source de l’article sur sap.com

Les actions en faveur du développement durable restent difficiles à mettre en œuvre, selon une nouvelle étude de SAP

Le changement climatique, l’utilisation des matériaux, la pollution de l’air, les déchets solides et la disponibilité des ressources sont les principaux freins au développement durable que les dirigeants d’entreprise ont identifiés comme nécessitant des investissements, selon une nouvelle étude mondiale parrainée par SAP SE (NYSE : SAP). En effet, la mise en œuvre et l’élargissement des plans d’action sur ces sujets restent des obstacles rencontrés par beaucoup d’entre eux.

« Préserver l’environnement à l’échelle planétaire : Une enquête sur les moteurs et les actions des entreprises » explore les mesures prises par les entreprises pour protéger l’environnement et les défis auxquels elles sont confrontées. L’étude sera commentée lors du SAP Sustainability Summit, les 28 et 29 avril prochain. Le sommet se concentrera sur la manière dont les entreprises réduisent leur empreinte environnementale et gèrent de manière productive des ressources limitées, tout en pilotant et en rendant compte de leurs activités de manière holistique.

L’enquête, qui s’appuie sur les commentaires de plus de 7 400 dirigeants d’entreprise, répartis dans 19 pays et 16 secteurs d’activité, a également révélé les points suivants :

  • Selon la plus grande tranche de répondants (29%), les réglementations sectorielles constituent une raison sous-jacente à l’investissement dans les enjeux environnementaux. Cependant, 27% ont cité le renforcement attendu par les publics quant aux efforts des entreprises pour le développement durable comme une forte raison sous-jacente, tandis que 26% ont cité les risques pour la réputation de l’entreprise.
  • L’engagement du PDG et du conseil d’administration, ainsi que les réglementations gouvernementales, arrivent en tête des motivations. La croissance du chiffre d’affaires et des bénéfices arrive juste derrière, ce qui démontre que les actions environnementales sont influencées par des pressions internes et externes.
  • L’incertitude quant à la manière d’intégrer la durabilité dans les processus commerciaux et les systèmes informatiques est considérée comme le principal obstacle à la mise en œuvre des plans d’action (35 %). L’alignement des actions proposées dans la stratégie globale de l’entreprise (34%) arrive en deuxième position, suivi de la difficulté à prouver le retour sur investissement de ces investissements (33%).
  • Seuls 21% des personnes interrogées se disent entièrement satisfaites de la qualité des données relatives aux problèmes environnementaux, la raison principale étant le manque de confiance dans le fait que les données sont complètes et couvrent le champ d’application requis.

« Les résultats de cette étude montrent que 83 % des entreprises ne pensent pas que les impacts environnementaux sont importants pour leur activité à l’heure actuelle », a déclaré Daniel Schmid, Chief Sustainability Officer, SAP. « Les entreprises doivent reconnaître que les questions environnementales sont désormais importantes. Avec un pourcentage croissant de consommateurs qui portent attention aux valeurs et à l’éthique des entreprises auprès desquelles ils achètent, nous avons la lourde responsabilité d’aider les organisations à mieux comprendre les impacts commerciaux de la crise climatique, à surmonter les obstacles identifiés dans ce rapport et à accélérer leur progression vers l’action en faveur du climat. »

Inscrivez-vous à l’événement virtuel en direct ici. Pour être informé de la publication des résultats finaux de l’enquête, veuillez consulter et vous abonner à SAP Insights.

À propos de SAP

La stratégie de SAP vise à aider chaque organisation à fonctionner en “entreprise intelligente”. En tant que leader du marché des logiciels d’application d’entreprise, nous aidons les entreprises de toutes tailles et de tous secteurs à opérer au mieux : 77 % des transactions commerciales mondiales entrent en contact avec un système SAP®. Nos technologies de Machine Learning, d’Internet des objets (IoT) et d’analytique avancées aident nos clients à transformer leurs activités en “entreprises intelligentes”. SAP permet aux personnes et aux organisations d’avoir une vision approfondie de leur business et favorise la collaboration afin qu’elles puissent garder une longueur d’avance sur leurs concurrents. Nous simplifions la technologie afin que les entreprises puissent utiliser nos logiciels comme elles le souhaitent – sans interruption. Notre suite d’applications et de services de bout en bout permet aux clients privés et publics de 25 secteurs d’activité dans le monde de fonctionner de manière rentable, de s’adapter en permanence et de faire la différence. Avec son réseau mondial de clients, partenaires, employés et leaders d’opinion, SAP aide le monde à mieux fonctionner et à améliorer la vie de chacun.

Pour plus d’informations, visitez le site www.sap.com .

Contacts presse SAP
Daniel Margato, Directeur Communication : 06 64 25 38 08 – daniel.margato@sap.com
Pauline Barriere : 06.13.73.93.11 – presse-sap@publicisconsultants.com

 

The post Les actions en faveur du développement durable restent difficiles à mettre en œuvre, selon une nouvelle étude de SAP appeared first on SAP France News.

Source de l’article sur sap.com

La planification financière en 2021 : trois petits mots

La plupart de mes conversations et pensées de ces derniers mois ont tourné autour de trois petits mots. Non, ce ne sont pas les trois petits mots auxquels vous pensez peut-être immédiatement, mais plutôt trois mots particulièrement chers au cœur des professionnels de la planification et de l’analyse financières en ce moment : l’agilité, la réactivité et la résilience.

Ce sont presque devenus des mots d’ordre pour le secteur ces neuf derniers mois, à mesure que les professionnels ont pris conscience de la nécessité de fournir à leur entreprise les informations requises pour prendre des décisions immédiates, de planifier et planifier encore, de générer des prévisions et de simuler de multiples résultats potentiels en fonction de variables en constante évolution. Et il apparaît clairement que certains y étaient bien mieux préparés que d’autres.

Notre enquête 2020 consacrée aux professionnels de la planification et de l’analyse financières, effectuée en collaboration avec FP&A Trends, a mis clairement en évidence une différence dans la réussite des pratiques de planification et d’analyse financières entre notre groupe entier d’entreprises interrogées et celles considérées comme ayant les « bonnes pratiques » en matière de planification et d’analyse financières. Parmi les défis cités par les entreprises interrogées, on retrouve le besoin de meilleurs systèmes de budgétisation et de prévision (cité par 30 % des entreprises interrogées), mais, d’un autre côté, de nombreuses entreprises déclarent utiliser des feuilles de calcul (73 %) dans le cadre de leurs processus de planification et de prévision. Bien sûr, même si nous avons tous utilisé et adoré les feuilles de calcul pour leur abondance et leur disponibilité, nous devons aussi reconnaître qu’elles ont certaines limites : elles nécessitent des interventions manuelles, sont propices aux erreurs de données et de calculs, peuvent devenir compliquées et peu pratiques, et ne pas offrir la flexibilité et l’agilité requises pour des recalculs et simulations rapides. Donc, à l’heure où les équipes de planification et d’analyse financières doivent se montrer particulièrement agiles, réactives et résilientes, les jours sont certainement comptés pour les anciens systèmes de planification, budgétisation et prévision basés sur feuilles de calcul. En fait, il est sans doute temps pour les entreprises d’examiner attentivement l’importance stratégique de la planification et de l’analyse financières pour leur activité, en réfléchissant aux défis identifiés en 2020, pour mieux cerner les opportunités d’améliorations pour 2021 et au-delà.

Et si les entreprises pouvaient…

  • Planifier et prévoir avec une facilité, une agilité et une flexibilité accrues.
  • Simuler de multiples scénarios de gestion en temps réel en réponse aux évolutions du marché.
  • Renforcer la résilience des plans stratégiques, mais aussi des processus et systèmes sur lesquels la planification et l’analyse financières reposent.

Comment de telles capacités permettraient-elles de transformer votre approche en matière d’analyse et de planification financières ?

Et, face à l’actuel besoin d’agilité, de réactivité et de résilience accrues dans le domaine de la planification et de l’analyse financières, quel est votre plan ?

Rejoignez mes collègues Pras Chatterjee et Chris Chan pour notre présentation consacrée à la planification et à l’analyse financières, proposée dans le cadre du SAP Finance and Risk Virtual Summit. Ils échangeront avec des invités spéciaux pour approfondir certaines des problématiques induisant des changements dans les pratiques de planification et d’analyse financières, et identifieront pour les professionnels de la finance des opportunités de transformer leur approche en matière de planification et d’analyse financières. Il s’agira de 45 minutes particulièrement riches et intenses, axées sur la planification et l’analyse financières, et la présentation de multiples fonctionnalités incontournables : ne manquez pas cet événement exceptionnel !

Merci de votre attention, nous espérons vous retrouver bientôt !

Publié en anglais sur blogs.sap.com

The post La planification financière en 2021 : trois petits mots appeared first on SAP France News.

Source de l’article sur sap.com

Devenir une ville intelligente n’est pas un objectif, c’est un mode de vie

Novo Mesto est une petite ville slovène située sur le coude pittoresque de la rivière Krka. Cette ville, dont l’origine remonte à la préhistoire, a toujours su gérer intelligemment ses ressources. L’idée d’assurer aux génération futures un environnement propre est profondément ancrée dans l’état d’esprit collectif. Les citoyens et les touristes peuvent se baigner dans la rivière en plein centre-ville.

« Nous ne sommes ni les premiers ni les derniers à vivre sur cette planète », déclare l’adjoint au maire de la ville, Bostjan Grobler. « Devenir une ville intelligente n’est pas un objectif en soi. L’objectif est de préserver la santé de nos citoyens et la salubrité de notre environnement afin d’offrir des emplois durables et des espaces de vie attrayants. La technologie nous aide à y parvenir. »

L’air pur comme point de départ

Comme beaucoup d’autres villes en Europe, Novo Mesto lutte depuis dix ans contre la pollution atmosphérique.

Celle-ci est particulièrement élevée en hiver, où les mesures font souvent état de particules de suie qui dépassent plusieurs fois par semaine les limites de matières particulaires (PM) fixées par l’Union européenne à 40 microgrammes par mètre cube. Il existe différents types de matières particulaires. Les matières les plus fréquemment mesurées sont des particules en suspension d’un diamètre de 10 microns ou moins, appelées PM10. Pour vous donner une idée, un micron est un millionième d’un mètre et un cheveu humain a une épaisseur d’environ 75 microns.

Selon l’Organisation mondiale de la santé (OMS), le niveau de PM10 doit être inférieur à 20 microgrammes par mètre cube. La ville allemande de Mannheim, par exemple, enregistre une moyenne annuelle de 22 microgrammes, contre 27 à Novo Mesto. Même si ces moyennes sont faibles en comparaison de Shanghai, qui avoisine les 84, elles peuvent entraîner des maladies cardiaques et pulmonaires ainsi qu’une irritation des voies respiratoires, en particulier lorsqu’elles dépassent 40 microgrammes.

Novo Mesto affichait des niveaux élevés de PM10 année après année, mais les dirigeants municipaux ne savaient pas comment y remédier.

« Il était évident que nous devions agir », explique Peter Gersic, responsable du développement de projets pour la municipalité de Novo Mesto, « car la pollution atmosphérique ne disparaît pas toute seule. Mais en toute honnêteté, nous ne savions que faire de ces données. »

Après quelques recherches, la municipalité s’est adressée à SAP et Telekom Slovénie. Juraj Kovac, un analyste de Telekom doué de l’expertise technique adéquate pour mettre en œuvre des solutions de ville intelligente, nous a expliqué le fonctionnement de la solution. Des capteurs ont été installés dans toute la ville pour recueillir des données non seulement sur la pollution atmosphérique, mais aussi sur d’autres indicateurs environnementaux importants, notamment l’utilisation de l’eau et la pollution lumineuse.

« Nous utilisons SAP Leonardo pour collecter les données et SAP Analytics pour les analyser », explique Juraj Kovac. « Toutes nos plateformes IdO s’exécutent sur SAP Cloud Platform. Les données sont utilisées par la municipalité pour prendre des décisions opérationnelles et par les citoyens qui utilisent des applications mobiles, par exemple pour trouver des places de stationnement. »

Améliorer la vie urbaine

L’adjoint au maire comprend désormais que la gestion des ressources de la ville n’est pas uniquement une affaire d’État. Il s’agit d’aider les citoyens à revoir leur mode de vie. « Si nous voulons que les gens prennent moins leur voiture, nous devons leur offrir des alternatives comme les transports publics et les pistes cyclables », déclare Bostjan Grobler. « Il ne suffit pas de motiver les gens à acheter des véhicules électriques. Nous devons veiller à ce qu’ils puissent facilement les garer et les recharger. ».

Ce que Novo Mesto souhaite réaliser à petite échelle grâce à la technologie intelligente existe déjà dans plusieurs villes du monde. Depuis les bâtiments écologiques et la collecte des déchets basée sur des capteurs, jusqu’au développement des transports publics et des services municipaux en ligne, les villes intelligentes révolutionnent la vie urbaine.

La ville de New York, par exemple, a été nommée ville la plus intelligente au monde pendant deux années consécutives notamment pour son recours à un système de relevé automatisé permettant de mieux comprendre comment ses 8,5 millions d’habitants utilisent 1 milliard de gallons d’eau chaque jour. La ville de Londres, qui arrive deuxième au classement, a été récompensée pour son système de transport collectif et ses politiques d’urbanisme.

La Commission de transport de Toronto utilise la technologie SAP pour optimiser la visibilité des processus et la communication pour le personnel œuvrant dans les transports en commun de la ville. La technologie IdO de SAP aide la ville d’Antibes à mieux gérer ses ressources en eau. La ville de Nanjing utilise les capteurs de circulation de SAP pour développer une culture plus écologique et plus humaniste.

Grâce à son utilisation visionnaire de la technologie pour assurer l’attractivité et la durabilité de la ville, Novo Mesto prouve que toute ville, quelle que soit sa taille, peut être une référence pour les générations à venir en matière de qualité de vie urbaine.

Publié en anglais sur Forbes.com

The post Devenir une ville intelligente n’est pas un objectif, c’est un mode de vie appeared first on SAP France News.

Source de l’article sur sap.com

Gestion des risques et de la trésorerie : des organisations qui vont de l’avant

L’année dernière, alors que le monde traversait une période de disruption majeure, beaucoup d’entreprises ont dû revoir leurs priorités et s’adapter à cette nouvelle réalité. Dans un contexte aussi instable et incertain, il était essentiel pour elles de disposer de processus numériques solides, capables de faire face aux exigences du télétravail, des changements de comportement des consommateurs et d’un environnement macro-économique plus difficile.

On a fait appel aux organisations de gestion de la trésorerie et des risques pour identifier les nouvelles sources de liquidité, apporter des insights clés sur la trésorerie et atténuer les risques financiers. Ces organisations ont elles-mêmes pu obtenir une meilleure visibilité sur l’état de leurs liquidités, prendre de nouvelles mesures pour combler les manques de trésorerie et fixer intelligemment de nouvelles priorités.

Les équipes de gestion de la trésorerie ont vite abandonné leurs opérations de routine pour se consacrer à la gestion de la crise. Si quelques entreprises étaient bien préparées et capables de réagir vite, grâce à leurs investissements dans des systèmes intégrés de gestion de la trésorerie, pour d’autres, la crise a été un signal d’alarme qui les a forcées à accélérer leur transformation pour améliorer leur collaboration et l’automatisation de leurs processus.

Aujourd’hui, alors qu’on espère voir la vague de la crise reculer, les équipes de gestion de la trésorerie doivent prendre le temps de réfléchir aux initiatives prioritaires à lancer afin de continuer à accélérer leur transformation.

Quels outils doivent-elles adopter pour renforcer leur collaboration et mettre en place un processus complet de gestion de l’actif circulant, des créances en cours aux encaissements ? Comment peuvent-elles obtenir une visibilité en temps réel sur la trésorerie, sans continuellement rechercher manuellement les mêmes informations ? Comment peuvent-elles mettre en œuvre un traitement direct au moyen des systèmes et réseaux adéquats ? Comment peuvent-elles mieux automatiser leur processus de gestion des commandes, en exploitant les nouvelles technologies telles que le Machine Learning ? Doivent-elles modifier leur stratégie de risque lié aux opérations de change pour mieux se préparer à la prochaine crise ? Comment peuvent-elles repenser le financement de leur chaîne logistique ?

Gestion des risques et de la trésorerie

Pour vous apporter des insights sur certaines de ces questions, nous avons créé le « Treasury and Risk Show », dans le cadre du sommet virtuel SAP Finance and Risk. Nous présenterons les innovations de SAP pour venir en aide à ses clients en ces temps difficiles.

Des experts SAP en gestion de la trésorerie et des risques vous parleront de la stratégie SAP, du portefeuille de produits et des dernières innovations dans ces domaines.

Vous verrez aussi comment Zalando, leader de la vente en ligne, vient de terminer la mise en œuvre de SAP Treasury and Risk Management, en plus de SAP S/4HANA. Ils nous expliqueront comment, en transformant leur gestion de la trésorerie, ils ont pu se préparer à réagir vite à la crise et à accélérer leur croissance.

Nous avons hâte de vous présenter la proposition de valeur de SAP pour vous aider à réellement faire avancer votre gestion de la trésorerie et des risques.

The post Gestion des risques et de la trésorerie : des organisations qui vont de l’avant appeared first on SAP France News.

Source de l’article sur sap.com