SUMMARY

Note: This joint Cybersecurity Advisory (CSA) is part of an ongoing #StopRansomware effort to publish advisories for network defenders that detail various ransomware variants and ransomware threat actors. These #StopRansomware advisories include recently and historically observed tactics, techniques, and procedures (TTPs) and indicators of compromise (IOCs) to help organizations protect against ransomware. Visit stopransomware.gov to see all #StopRansomware advisories and to learn more about other ransomware threats and no-cost resources.

Actions to take today to mitigate cyber threats from ransomware:

The Federal Bureau of Investigation (FBI) and the Cybersecurity and Infrastructure Security Agency (CISA) are releasing this joint CSA to disseminate known Royal ransomware IOCs and TTPs identified through FBI threat response activities as recently as January 2023.

Since approximately September 2022, cyber criminals have compromised U.S. and international organizations with a Royal ransomware variant. FBI and CISA believe this variant, which uses its own custom-made file encryption program, evolved from earlier iterations that used “Zeon” as a loader. After gaining access to victims’ networks, Royal actors disable antivirus software and exfiltrate large amounts of data before ultimately deploying the ransomware and encrypting the systems. Royal actors have made ransom demands ranging from approximately $1 million to $11 million USD in Bitcoin. In observed incidents, Royal actors do not include ransom amounts and payment instructions as part of the initial ransom note. Instead, the note, which appears after encryption, requires victims to directly interact with the threat actor via a .onion URL (reachable through the Tor browser). Royal actors have targeted numerous critical infrastructure sectors including, but not limited to, Manufacturing, Communications, Healthcare and Public Healthcare (HPH), and Education.

FBI and CISA encourage organizations to implement the recommendations in the Mitigations section of this CSA to reduce the likelihood and impact of ransomware incidents.

Download the PDF version of this report:

For a downloadable copy of IOCs, see

AA23-061A STIX XML (XML, 114.26 KB )

TECHNICAL DETAILS

Note: This advisory uses the MITRE ATT&CK® for Enterprise framework, version 12. See MITRE ATT&CK for Enterprise for all referenced tactics and techniques.

Royal ransomware uses a unique partial encryption approach that allows the threat actor to choose a specific percentage of data in a file to encrypt. This approach allows the actor to lower the encryption percentage for larger files, which helps evade detection.[1] In addition to encrypting files, Royal actors also engage in double extortion tactics in which they threaten to publicly release the encrypted data if the victim does not pay the ransom.

Initial Access

Royal actors gain initial access to victim networks in a number of ways including: 

  • Phishing. According to third-party reporting, Royal actors most commonly (in 66.7% of incidents) gain initial access to victim networks via successful phishing emails [T1566].
    • According to open-source reporting, victims have unknowingly installed malware that delivers Royal ransomware after receiving phishing emails containing malicious PDF documents [T1566.001], and malvertising [T1566.002].[2]
  • Remote Desktop Protocol (RDP). The second most common vector Royal actors use (in 13.3% of incidents) for initial access is RDP compromise.  
  • Public-facing applications. FBI has also observed Royal actors gain initial access through exploiting public-facing applications [T1190]. 
  • Brokers. Reports from trusted third-party sources indicate that Royal actors may leverage brokers to gain initial access and source traffic by harvesting virtual private network (VPN) credentials from stealer logs. 
Command and Control

Once Royal actors gain access to the network, they communicate with command and control (C2) infrastructure and download multiple tools [T1105]. Legitimate Windows software is repurposed by Royal operators to strengthen their foothold in the victim’s network. Ransomware operators often use open-source projects to aid their intrusion activities; Royal operators have recently been observed using Chisel, a tunneling tool transported over HTTP and secured via SSH [T1572], to communicate with their C2 infrastructure. FBI has observed multiple Qakbot C2s used in Royal ransomware attacks, but has not yet determined if Royal ransomware exclusively uses Qakbot C2s.

Lateral Movement and Persistence

Royal actors often use RDP to move laterally across the network [T1021.001]. Microsoft Sysinternals tool PsExec has also been used to aid lateral movement. FBI has observed Royal actors using remote monitoring and management (RMM) software, such as AnyDesk, LogMeIn, and Atera, for persistence in the victim’s network [T1133]. In some instances, the actors moved laterally to the domain controller. In one confirmed case, the actors used a legitimate admin account to remotely log on to the domain controller [T1078]. Once on the domain controller, the threat actor deactivated antivirus protocols [T1562.001] by modifying Group Policy Objects [T1484.001].

Exfiltration

Royal actors exfiltrate data from victim networks by repurposing legitimate cyber pentesting tools, such as Cobalt Strike, and malware tools and derivatives, such as Ursnif/Gozi, for data aggregation and exfiltration. According to third-party reporting, Royal actors’ first hop in exfiltration and other operations is usually a U.S. IP address.

Note: In reference to Cobalt Strike and other tools mentioned above, a tool repository used by Royal was identified at IP: 94.232.41[.]105 in December 2022.

Encryption

Before starting the encryption process, Royal actors: 

  • Use Windows Restart Manager to determine whether targeted files are currently in use or blocked by other applications [T1486].[1
  • Use Windows Volume Shadow Copy service (vssadmin.exe) to delete shadow copies to prevent system recovery.[1]  

FBI has found numerous batch (.bat) files on impacted systems which are typically transferred as an encrypted 7zip file. Batch files create a new admin user [T1078.002], force a group policy update, set pertinent registry keys to auto-extract [T1119] and execute the ransomware, monitor the encryption process, and delete files upon completion—including Application, System, and Security event logs [T1070.001].

Malicious files have been found in victim networks in the following directories:

  • C:Temp  
  • C:UsersAppDataRoaming  
  • C:Users 
  • C:ProgramData
Indicators of Compromise (IOC)

See table 1 and 2 for Royal ransomware IOCs that FBI obtained during threat response activities as of January 2023. Note: Some of the observed IP addresses are several months old. FBI and CISA recommend vetting or investigating these IP addresses prior to taking forward-looking action, such as blocking.

Table 1: Royal Ransomware Associated Files, Hashes, and IP addresses as of January 2023

IOC

Description

.royal

Encrypted file extension

README.TXT

Ransom note

Malicious IP

Last Activity

102.157.44[.]105

November 2022

105.158.118[.]241

November 2022

105.69.155[.]85

November 2022

113.169.187[.]159

November 2022

134.35.9[.]209

November 2022

139.195.43[.]166

November 2022

139.60.161[.]213

November 2022

148.213.109[.]165

November 2022

163.182.177[.]80

November 2022

181.141.3[.]126

November 2022

181.164.194[.]228

November 2022

185.143.223[.]69

November 2022

186.64.67[.]6

November 2022

186.86.212[.]138

November 2022

190.193.180[.]228

November 2022

196.70.77[.]11

November 2022

197.11.134[.]255

November 2022

197.158.89[.]85

November 2022

197.204.247[.]7

November 2022

197.207.181[.]147

November 2022

197.207.218[.]27

November 2022

197.94.67[.]207

November 2022

23.111.114[.]52

November 2022

41.100.55[.]97

November 2022

41.107.77[.]67

November 2022

41.109.11[.]80

November 2022

41.251.121[.]35

November 2022

41.97.65[.]51

November 2022

42.189.12[.]36

November 2022

45.227.251[.]167

November 2022

5.44.42[.]20

November 2022

61.166.221[.]46

November 2022

68.83.169[.]91

November 2022

81.184.181[.]215

November 2022

82.12.196[.]197

November 2022

98.143.70[.]147

November 2022

140.82.48[.]158

December 2022

147.135.36[.]162

December 2022

147.135.11[.]223

December 2022

152.89.247[.]50

December 2022

179.43.167[.]10

December 2022

185.7.214[.]218

December 2022

193.149.176[.]157

December 2022

193.235.146[.]104

December 2022

209.141.36[.]116

December 2022

45.61.136[.]47

December 2022

45.8.158[.]104

December 2022

5.181.234[.]58

December 2022

5.188.86[.]195

December 2022

77.73.133[.]84

December 2022

89.108.65[.]136

December 2022

94.232.41[.]105

December 2022

47.87.229[.]39

January 2023

Malicious Domain

Last Observed

ciborkumari[.]xyz

October 2022

sombrat[.]com

October 2022

gororama[.]com

November 2022

softeruplive[.]com

November 2022

altocloudzone[.]live

December 2022

ciborkumari[.]xyz

December 2022

myappearinc[.]com

December 2022

parkerpublic[.]com

December 2022

pastebin.mozilla[.]org/Z54Vudf9/raw

December 2022

tumbleproperty[.]com

December 2022

myappearinc[.]com/acquire/draft/c7lh0s5jv

January 2023

Table 2: Tools used by Royal operators

Tool

SHA256

AV tamper

8A983042278BC5897DBCDD54D1D7E3143F8B7EAD553B5A4713E30DEFFDA16375

TCP/UDP Tunnel over HTTP (Chisel)

8a99353662ccae117d2bb22efd8c43d7169060450be413af763e8ad7522d2451

Ursnif/Gozi

be030e685536eb38ba1fec1c90e90a4165f6641c8dc39291db1d23f4ee9fa0b1

Exfil

B8C4AEC31C134ADBDBE8AAD65D2BCB21CFE62D299696A23ADD9AA1DE082C6E20

Remote Access (AnyDesk)

4a9dde3979c2343c024c6eeeddff7639be301826dd637c006074e04a1e4e9fe7

PowerShell Toolkit Downloader

4cd00234b18e04dcd745cc81bb928c8451f6601affb5fa45f20bb11bfb5383ce

PsExec (Microsoft Sysinternals)

08c6e20b1785d4ec4e3f9956931d992377963580b4b2c6579fd9930e08882b1c

Keep Host Unlocked (Don’t Sleep)

f8cff7082a936912baf2124d42ed82403c75c87cb160553a7df862f8d81809ee

Ransomware Executable

d47d4b52e75e8cf3b11ea171163a66c06d1792227c1cf7ca49d7df60804a1681

Windows Command Line (NirCmd)

216047C048BF1DCBF031CF24BD5E0F263994A5DF60B23089E393033D17257CB5

System Management (NSudo)

19896A23D7B054625C2F6B1EE1551A0DA68AD25CDDBB24510A3B74578418E618

Batch Scripts

 

Filename

Hash Value

2.bat

585b05b290d241a249af93b1896a9474128da969

3.bat

41a79f83f8b00ac7a9dd06e1e225d64d95d29b1d

4.bat

a84ed0f3c46b01d66510ccc9b1fc1e07af005c60

8.bat

c96154690f60a8e1f2271242e458029014ffe30a

kl.bat

65dc04f3f75deb3b287cca3138d9d0ec36b8bea0

gp.bat

82f1f72f4b1bfd7cc8afbe6d170686b1066049bc7e5863b51aa15ccc5c841f58

r.bat

74d81ef0be02899a177d7ff6374d699b634c70275b3292dbc67e577b5f6a3f3c

runanddelete.bat

342B398647073159DFA8A7D36510171F731B760089A546E96FBB8A292791EFEE

MITRE ATT&CK TECHNIQUES

See table 3 for all referenced threat actor tactics and techniques included in this advisory.

Table 3: Royal Actors ATT&CK Techniques for Enterprise

Initial Access

   

Technique Title

ID

Use

Exploit Public Facing Application

T1190

The actors gain initial access through public-facing applications.

Phishing: Spear phishing Attachment

T1566.001

The actors gain initial access through malicious PDF attachments sent via email.

Phishing: Spearphishing Link

T1566.002

The actors gain initial access using malvertising links via emails and public-facing sites.

External Remote Services

T1133

The actors gain initial access through a variety of RMM software.

Command and Control

   

Technique Title

ID

Use

Ingress Tool Transfer

T1105

The actors used C2 infrastructure to download multiple tools.

Protocol Tunneling

T1572

The actors used an encrypted SSH tunnel to communicate within C2 infrastructure.

                                                              Privilege Escalation

   

Technique Title

ID

Use

Valid Accounts: Domain Accounts

T1078.002

The actors used encrypted files to create new admin user accounts.

Defense Evasion

   

Technique Title

ID

Use

Impair Defenses: Disable or Modify Tools

T1562.001

The actors deactivated antivirus protocols.

Domain Policy Modification: Group Policy Modification

T1484.001

The actors modified Group Policy Objects to subvert antivirus protocols.

Indicator Removal: Clear Windows Event Logs

T1070.001

The actors deleted shadow files and system and security logs after exfiltration.

Remote Desktop Protocol

T1021.001

The actors used valid accounts to move laterally through the domain controller using RDP.

Automated Collection

T1119

The actors used registry keys to auto-extract and collect files.

                                                                         Impact  

   

Technique Title

ID

Use

Data Encrypted for Impact

T1486

The actors encrypted data to determine which files were being used or blocked by other applications.

MITIGATIONS

FBI and CISA recommend network defenders apply the following mitigations to limit potential adversarial use of common system and network discovery techniques and to reduce the risk of compromise by Royal ransomware. These mitigations follow CISA’s Cybersecurity Performance Goals (CPGs), which provide a minimum set of practices and protections that are informed by the most common and impactful threats, tactics, techniques, and procedures, and which yield goals that all organizations across critical infrastructure sectors should implement:

  • Implement a recovery plan to maintain and retain multiple copies of sensitive or proprietary data and servers [CPG 7.3] in a physically separate, segmented, and secure location (i.e., hard drive, storage device, the cloud).
  • Require all accounts with password logins (e.g., service account, admin accounts, and domain admin accounts) to comply with National Institute for Standards and Technology (NIST) standards for developing and managing password policies [CPG 3.4].
    • Use longer passwords consisting of at least 8 characters and no more than 64 characters in length [CPG 1.4].
    • Store passwords in hashed format using industry-recognized password managers.
    • Add password user “salts” to shared login credentials.
    • Avoid reusing passwords.
    • Implement multiple failed login attempt account lockouts [CPG 1.1].
    • Disable password hints.
    • Refrain from requiring password changes more frequently than once per year. Note: NIST guidance suggests favoring longer passwords instead of requiring regular and frequent password resets. Frequent password resets are more likely to result in users developing password patterns cyber criminals can easily decipher. 
    • Require administrator credentials to install software.
  • Require multifactor authentication [CPG 1.3] for all services to the extent possible, particularly for webmail, virtual private networks, and accounts that access critical systems. 
  • Keep all operating systems, software, and firmware up to date. Timely patching is one of the most efficient and cost-effective steps an organization can take to minimize its exposure to cybersecurity threats. 
  • Segment networks [CPG 8.1]. Network segmentation can help prevent the spread of ransomware by controlling traffic flows between—and access to—various subnetworks and by restricting adversary lateral movement. 
  • Identify, detect, and investigate abnormal activity and potential traversal of the indicated ransomware with a networking monitoring tool. To aid in detecting ransomware, implement a tool that logs and reports all network traffic [CPG 5.1], including lateral movement activity on a network. Endpoint detection and response (EDR) tools are useful for detecting lateral connections as they have insight into common and uncommon network connections for each host. 
  • Install, regularly update, and enable real time detection for antivirus software on all hosts.
  • Review domain controllers, servers, workstations, and active directories for new and/or unrecognized accounts.
  • Audit user accounts with administrative privileges and configure access controls according to the principle of least privilege [CPG 1.5].
  • Disable unused ports.
  • Consider adding an email banner to emails [CPG 8.3] received from outside your organization.
  • Implement time-based access for accounts set at the admin level and higher. For example, the Just-in-Time (JIT) access method provisions privileged access when needed and can support enforcement of the principle of least privilege (as well as the Zero Trust model). This is a process where a network-wide policy is set in place to automatically disable admin accounts at the Active Directory level when the account is not in direct need. Individual users may submit their requests through an automated process that grants them access to a specified system for a set timeframe when they need to support the completion of a certain task. 
  • Disable command-line and scripting activities and permissions. Privilege escalation and lateral movement often depend on software utilities running from the command line. If threat actors are not able to run these tools, they will have difficulty escalating privileges and/or moving laterally. 
  • Maintain offline backups of data, and regularly maintain backup and restoration [CPG 7.3]. By instituting this practice, the organization ensures they will not be severely interrupted, and/or only have irretrievable data. 
  • Ensure all backup data is encrypted, immutable (i.e., cannot be altered or deleted), and covers the entire organization’s data infrastructure [CPG 3.3].

RESOURCES

REPORTING

FBI is seeking any information that can be shared, to include boundary logs showing communication to and from foreign IP addresses, a sample ransom note, communications with Royal actors, Bitcoin wallet information, decryptor files, and/or a benign sample of an encrypted file.

Additional details requested include: a targeted company Point of Contact, status and scope of infection, estimated loss, operational impact, transaction IDs, date of infection, date detected, initial attack vector, host and network based indicators.

FBI and CISA do not encourage paying ransom as payment does not guarantee victim files will be recovered. Furthermore, payment may also embolden adversaries to target additional organizations, encourage other criminal actors to engage in the distribution of ransomware, and/or fund illicit activities. Regardless of whether you or your organization have decided to pay the ransom, FBI and CISA urge you to promptly report ransomware incidents to a local FBI Field Office, or CISA at https://www.cisa.gov/report.

DISCLAIMER

The information in this report is being provided “as is” for informational purposes only. CISA and FBI do not endorse any commercial product or service, including any subjects of analysis. Any reference to specific commercial products, processes, or services by service mark, trademark, manufacturer, or otherwise, does not constitute or imply endorsement, recommendation, or favoring by CISA or the FBI.

REFERENCES

[1] Royal Rumble: Analysis of Royal Ransomware (cybereason.com)
[2] DEV-0569 finds new ways to deliver Royal ransomware, various payloads – Microsoft Security Blog
[3] 2023-01: ACSC Ransomware Profile – Royal | Cyber.gov.au

ACKNOWLEDGEMENTS

Recorded Future, Coveware, Digital Asset Redemption, Q6, and RedSense contributed to this CSA.

Please share your thoughts. We recently updated our anonymous Product Feedback Survey and we’d welcome your feedback.

Source de l’article sur us-cert.gov

SUMMARY

Note: This joint Cybersecurity Advisory (CSA) is part of an ongoing #StopRansomware effort to publish advisories for network defenders that detail various ransomware variants and ransomware threat actors. These #StopRansomware advisories include recently and historically observed tactics, techniques, and procedures (TTPs) and indicators of compromise (IOCs) to help organizations protect against ransomware. Visit stopransomware.gov to see all #StopRansomware advisories and to learn more about other ransomware threats and no-cost resources.

Actions to take today to mitigate cyber threats from ransomware:

The Federal Bureau of Investigation (FBI) and the Cybersecurity and Infrastructure Security Agency (CISA) are releasing this joint CSA to disseminate known Royal ransomware IOCs and TTPs identified through FBI threat response activities as recently as January 2023.

Since approximately September 2022, cyber criminals have compromised U.S. and international organizations with a Royal ransomware variant. FBI and CISA believe this variant, which uses its own custom-made file encryption program, evolved from earlier iterations that used “Zeon” as a loader. After gaining access to victims’ networks, Royal actors disable antivirus software and exfiltrate large amounts of data before ultimately deploying the ransomware and encrypting the systems. Royal actors have made ransom demands ranging from approximately $1 million to $11 million USD in Bitcoin. In observed incidents, Royal actors do not include ransom amounts and payment instructions as part of the initial ransom note. Instead, the note, which appears after encryption, requires victims to directly interact with the threat actor via a .onion URL (reachable through the Tor browser). Royal actors have targeted numerous critical infrastructure sectors including, but not limited to, Manufacturing, Communications, Healthcare and Public Healthcare (HPH), and Education.

FBI and CISA encourage organizations to implement the recommendations in the Mitigations section of this CSA to reduce the likelihood and impact of ransomware incidents.

Download the PDF version of this report:

For a downloadable copy of IOCs, see

AA23-061A STIX XML (XML, 115.20 KB )

TECHNICAL DETAILS

Note: This advisory uses the MITRE ATT&CK® for Enterprise framework, version 12. See MITRE ATT&CK for Enterprise for all referenced tactics and techniques.

Royal ransomware uses a unique partial encryption approach that allows the threat actor to choose a specific percentage of data in a file to encrypt. This approach allows the actor to lower the encryption percentage for larger files, which helps evade detection.[1] In addition to encrypting files, Royal actors also engage in double extortion tactics in which they threaten to publicly release the encrypted data if the victim does not pay the ransom.

Initial Access

Royal actors gain initial access to victim networks in a number of ways including: 

  • Phishing. According to third-party reporting, Royal actors most commonly (in 66.7% of incidents) gain initial access to victim networks via successful phishing emails [T1566].
    • According to open-source reporting, victims have unknowingly installed malware that delivers Royal ransomware after receiving phishing emails containing malicious PDF documents [T1566.001], and malvertising [T1566.002].[2]
  • Remote Desktop Protocol (RDP). The second most common vector Royal actors use (in 13.3% of incidents) for initial access is RDP compromise.  
  • Public-facing applications. FBI has also observed Royal actors gain initial access through exploiting public-facing applications [T1190]. 
  • Brokers. Reports from trusted third-party sources indicate that Royal actors may leverage brokers to gain initial access and source traffic by harvesting virtual private network (VPN) credentials from stealer logs. 
Command and Control

Once Royal actors gain access to the network, they communicate with command and control (C2) infrastructure and download multiple tools [T1105]. Legitimate Windows software is repurposed by Royal operators to strengthen their foothold in the victim’s network. Ransomware operators often use open-source projects to aid their intrusion activities; Royal operators have recently been observed using Chisel, a tunneling tool transported over HTTP and secured via SSH [T1572], to communicate with their C2 infrastructure. FBI has observed multiple Qakbot C2s used in Royal ransomware attacks, but has not yet determined if Royal ransomware exclusively uses Qakbot C2s.

Lateral Movement and Persistence

Royal actors often use RDP to move laterally across the network [T1021.001]. Microsoft Sysinternals tool PsExec has also been used to aid lateral movement. FBI has observed Royal actors using remote monitoring and management (RMM) software, such as AnyDesk, LogMeIn, and Atera, for persistence in the victim’s network [T1133]. In some instances, the actors moved laterally to the domain controller. In one confirmed case, the actors used a legitimate admin account to remotely log on to the domain controller [T1078]. Once on the domain controller, the threat actor deactivated antivirus protocols [T1562.001] by modifying Group Policy Objects [T1484.001].

Exfiltration

Royal actors exfiltrate data from victim networks by repurposing legitimate cyber pentesting tools, such as Cobalt Strike, and malware tools and derivatives, such as Ursnif/Gozi, for data aggregation and exfiltration. According to third-party reporting, Royal actors’ first hop in exfiltration and other operations is usually a U.S. IP address.

Note: In reference to Cobalt Strike and other tools mentioned above, a tool repository used by Royal was identified at IP: 94.232.41[.]105 in December 2022.

Encryption

Before starting the encryption process, Royal actors: 

  • Use Windows Restart Manager to determine whether targeted files are currently in use or blocked by other applications [T1486].[1
  • Use Windows Volume Shadow Copy service (vssadmin.exe) to delete shadow copies to prevent system recovery.[1]  

FBI has found numerous batch (.bat) files on impacted systems which are typically transferred as an encrypted 7zip file. Batch files create a new admin user [T1078.002], force a group policy update, set pertinent registry keys to auto-extract [T1119] and execute the ransomware, monitor the encryption process, and delete files upon completion—including Application, System, and Security event logs [T1070.001].

Malicious files have been found in victim networks in the following directories:

  • C:Temp  
  • C:UsersAppDataRoaming  
  • C:Users 
  • C:ProgramData
Indicators of Compromise (IOC)

See table 1 and 2 for Royal ransomware IOCs that FBI obtained during threat response activities as of January 2023. Note: Some of the observed IP addresses are several months old. FBI and CISA recommend vetting or investigating these IP addresses prior to taking forward-looking action, such as blocking.

Table 1: Royal Ransomware Associated Files, Hashes, and IP addresses as of January 2023

IOC

Description

.royal

Encrypted file extension

README.TXT

Ransom note

Malicious IP

Last Activity

102.157.44[.]105

November 2022

105.158.118[.]241

November 2022

105.69.155[.]85

November 2022

113.169.187[.]159

November 2022

134.35.9[.]209

November 2022

139.195.43[.]166

November 2022

139.60.161[.]213

November 2022

148.213.109[.]165

November 2022

163.182.177[.]80

November 2022

181.141.3[.]126

November 2022

181.164.194[.]228

November 2022

185.143.223[.]69

November 2022

186.64.67[.]6

November 2022

186.86.212[.]138

November 2022

190.193.180[.]228

November 2022

196.70.77[.]11

November 2022

197.11.134[.]255

November 2022

197.158.89[.]85

November 2022

197.204.247[.]7

November 2022

197.207.181[.]147

November 2022

197.207.218[.]27

November 2022

197.94.67[.]207

November 2022

23.111.114[.]52

November 2022

41.100.55[.]97

November 2022

41.107.77[.]67

November 2022

41.109.11[.]80

November 2022

41.251.121[.]35

November 2022

41.97.65[.]51

November 2022

42.189.12[.]36

November 2022

45.227.251[.]167

November 2022

5.44.42[.]20

November 2022

61.166.221[.]46

November 2022

68.83.169[.]91

November 2022

81.184.181[.]215

November 2022

82.12.196[.]197

November 2022

98.143.70[.]147

November 2022

140.82.48[.]158

December 2022

147.135.36[.]162

December 2022

147.135.11[.]223

December 2022

152.89.247[.]50

December 2022

172.64.80[.]1

December 2022

179.43.167[.]10

December 2022

185.7.214[.]218

December 2022

193.149.176[.]157

December 2022

193.235.146[.]104

December 2022

209.141.36[.]116

December 2022

45.61.136[.]47

December 2022

45.8.158[.]104

December 2022

5.181.234[.]58

December 2022

5.188.86[.]195

December 2022

77.73.133[.]84

December 2022

89.108.65[.]136

December 2022

94.232.41[.]105

December 2022

47.87.229[.]39

January 2023

Malicious Domain

Last Observed

ciborkumari[.]xyz

October 2022

sombrat[.]com

October 2022

gororama[.]com

November 2022

softeruplive[.]com

November 2022

altocloudzone[.]live

December 2022

ciborkumari[.]xyz

December 2022

myappearinc[.]com

December 2022

parkerpublic[.]com

December 2022

pastebin.mozilla[.]org/Z54Vudf9/raw

December 2022

tumbleproperty[.]com

December 2022

myappearinc[.]com/acquire/draft/c7lh0s5jv

January 2023

Table 2: Tools used by Royal operators

Tool

SHA256

AV tamper

8A983042278BC5897DBCDD54D1D7E3143F8B7EAD553B5A4713E30DEFFDA16375

TCP/UDP Tunnel over HTTP (Chisel)

8a99353662ccae117d2bb22efd8c43d7169060450be413af763e8ad7522d2451

Ursnif/Gozi

be030e685536eb38ba1fec1c90e90a4165f6641c8dc39291db1d23f4ee9fa0b1

Exfil

B8C4AEC31C134ADBDBE8AAD65D2BCB21CFE62D299696A23ADD9AA1DE082C6E20

Remote Access (AnyDesk)

4a9dde3979c2343c024c6eeeddff7639be301826dd637c006074e04a1e4e9fe7

PowerShell Toolkit Downloader

4cd00234b18e04dcd745cc81bb928c8451f6601affb5fa45f20bb11bfb5383ce

PsExec (Microsoft Sysinternals)

08c6e20b1785d4ec4e3f9956931d992377963580b4b2c6579fd9930e08882b1c

Keep Host Unlocked (Don’t Sleep)

f8cff7082a936912baf2124d42ed82403c75c87cb160553a7df862f8d81809ee

Ransomware Executable

d47d4b52e75e8cf3b11ea171163a66c06d1792227c1cf7ca49d7df60804a1681

Windows Command Line (NirCmd)

216047C048BF1DCBF031CF24BD5E0F263994A5DF60B23089E393033D17257CB5

System Management (NSudo)

19896A23D7B054625C2F6B1EE1551A0DA68AD25CDDBB24510A3B74578418E618

Batch Scripts

 

Filename

Hash Value

2.bat

585b05b290d241a249af93b1896a9474128da969

3.bat

41a79f83f8b00ac7a9dd06e1e225d64d95d29b1d

4.bat

a84ed0f3c46b01d66510ccc9b1fc1e07af005c60

8.bat

c96154690f60a8e1f2271242e458029014ffe30a

kl.bat

65dc04f3f75deb3b287cca3138d9d0ec36b8bea0

gp.bat

82f1f72f4b1bfd7cc8afbe6d170686b1066049bc7e5863b51aa15ccc5c841f58

r.bat

74d81ef0be02899a177d7ff6374d699b634c70275b3292dbc67e577b5f6a3f3c

runanddelete.bat

342B398647073159DFA8A7D36510171F731B760089A546E96FBB8A292791EFEE

MITRE ATT&CK TECHNIQUES

See table 3 for all referenced threat actor tactics and techniques included in this advisory.

Table 3: Royal Actors ATT&CK Techniques for Enterprise

Initial Access

   

Technique Title

ID

Use

Exploit Public Facing Application

T1190

The actors gain initial access through public-facing applications.

Phishing: Spear phishing Attachment

T1566.001

The actors gain initial access through malicious PDF attachments sent via email.

Phishing: Spearphishing Link

T1566.002

The actors gain initial access using malvertising links via emails and public-facing sites.

External Remote Services

T1133

The actors gain initial access through a variety of RMM software.

Command and Control

   

Technique Title

ID

Use

Ingress Tool Transfer

T1105

The actors used C2 infrastructure to download multiple tools.

Protocol Tunneling

T1572

The actors used an encrypted SSH tunnel to communicate within C2 infrastructure.

                                                              Privilege Escalation

   

Technique Title

ID

Use

Valid Accounts: Domain Accounts

T1078.002

The actors used encrypted files to create new admin user accounts.

Defense Evasion

   

Technique Title

ID

Use

Impair Defenses: Disable or Modify Tools

T1562.001

The actors deactivated antivirus protocols.

Domain Policy Modification: Group Policy Modification

T1484.001

The actors modified Group Policy Objects to subvert antivirus protocols.

Indicator Removal: Clear Windows Event Logs

T1070.001

The actors deleted shadow files and system and security logs after exfiltration.

Remote Desktop Protocol

T1021.001

The actors used valid accounts to move laterally through the domain controller using RDP.

Automated Collection

T1119

The actors used registry keys to auto-extract and collect files.

                                                                         Impact  

   

Technique Title

ID

Use

Data Encrypted for Impact

T1486

The actors encrypted data to determine which files were being used or blocked by other applications.

MITIGATIONS

FBI and CISA recommend network defenders apply the following mitigations to limit potential adversarial use of common system and network discovery techniques and to reduce the risk of compromise by Royal ransomware. These mitigations follow CISA’s Cybersecurity Performance Goals (CPGs), which provide a minimum set of practices and protections that are informed by the most common and impactful threats, tactics, techniques, and procedures, and which yield goals that all organizations across critical infrastructure sectors should implement:

  • Implement a recovery plan to maintain and retain multiple copies of sensitive or proprietary data and servers [CPG 7.3] in a physically separate, segmented, and secure location (i.e., hard drive, storage device, the cloud).
  • Require all accounts with password logins (e.g., service account, admin accounts, and domain admin accounts) to comply with National Institute for Standards and Technology (NIST) standards for developing and managing password policies [CPG 3.4].
    • Use longer passwords consisting of at least 8 characters and no more than 64 characters in length [CPG 1.4].
    • Store passwords in hashed format using industry-recognized password managers.
    • Add password user “salts” to shared login credentials.
    • Avoid reusing passwords.
    • Implement multiple failed login attempt account lockouts [CPG 1.1].
    • Disable password hints.
    • Refrain from requiring password changes more frequently than once per year. Note: NIST guidance suggests favoring longer passwords instead of requiring regular and frequent password resets. Frequent password resets are more likely to result in users developing password patterns cyber criminals can easily decipher. 
    • Require administrator credentials to install software.
  • Require multifactor authentication [CPG 1.3] for all services to the extent possible, particularly for webmail, virtual private networks, and accounts that access critical systems. 
  • Keep all operating systems, software, and firmware up to date. Timely patching is one of the most efficient and cost-effective steps an organization can take to minimize its exposure to cybersecurity threats. 
  • Segment networks [CPG 8.1]. Network segmentation can help prevent the spread of ransomware by controlling traffic flows between—and access to—various subnetworks and by restricting adversary lateral movement. 
  • Identify, detect, and investigate abnormal activity and potential traversal of the indicated ransomware with a networking monitoring tool. To aid in detecting ransomware, implement a tool that logs and reports all network traffic [CPG 5.1], including lateral movement activity on a network. Endpoint detection and response (EDR) tools are useful for detecting lateral connections as they have insight into common and uncommon network connections for each host. 
  • Install, regularly update, and enable real time detection for antivirus software on all hosts.
  • Review domain controllers, servers, workstations, and active directories for new and/or unrecognized accounts.
  • Audit user accounts with administrative privileges and configure access controls according to the principle of least privilege [CPG 1.5].
  • Disable unused ports.
  • Consider adding an email banner to emails [CPG 8.3] received from outside your organization.
  • Implement time-based access for accounts set at the admin level and higher. For example, the Just-in-Time (JIT) access method provisions privileged access when needed and can support enforcement of the principle of least privilege (as well as the Zero Trust model). This is a process where a network-wide policy is set in place to automatically disable admin accounts at the Active Directory level when the account is not in direct need. Individual users may submit their requests through an automated process that grants them access to a specified system for a set timeframe when they need to support the completion of a certain task. 
  • Disable command-line and scripting activities and permissions. Privilege escalation and lateral movement often depend on software utilities running from the command line. If threat actors are not able to run these tools, they will have difficulty escalating privileges and/or moving laterally. 
  • Maintain offline backups of data, and regularly maintain backup and restoration [CPG 7.3]. By instituting this practice, the organization ensures they will not be severely interrupted, and/or only have irretrievable data. 
  • Ensure all backup data is encrypted, immutable (i.e., cannot be altered or deleted), and covers the entire organization’s data infrastructure [CPG 3.3].

RESOURCES

REPORTING

FBI is seeking any information that can be shared, to include boundary logs showing communication to and from foreign IP addresses, a sample ransom note, communications with Royal actors, Bitcoin wallet information, decryptor files, and/or a benign sample of an encrypted file.

Additional details requested include: a targeted company Point of Contact, status and scope of infection, estimated loss, operational impact, transaction IDs, date of infection, date detected, initial attack vector, host and network based indicators.

FBI and CISA do not encourage paying ransom as payment does not guarantee victim files will be recovered. Furthermore, payment may also embolden adversaries to target additional organizations, encourage other criminal actors to engage in the distribution of ransomware, and/or fund illicit activities. Regardless of whether you or your organization have decided to pay the ransom, FBI and CISA urge you to promptly report ransomware incidents to a local FBI Field Office, or CISA at https://www.cisa.gov/report.

DISCLAIMER

The information in this report is being provided “as is” for informational purposes only. CISA and FBI do not endorse any commercial product or service, including any subjects of analysis. Any reference to specific commercial products, processes, or services by service mark, trademark, manufacturer, or otherwise, does not constitute or imply endorsement, recommendation, or favoring by CISA or the FBI.

REFERENCES

[1] Royal Rumble: Analysis of Royal Ransomware (cybereason.com)
[2] DEV-0569 finds new ways to deliver Royal ransomware, various payloads – Microsoft Security Blog
[3] 2023-01: ACSC Ransomware Profile – Royal | Cyber.gov.au

ACKNOWLEDGEMENTS

Recorded Future, Coveware, Digital Asset Redemption, Q6, and RedSense contributed to this CSA.

Please share your thoughts. We recently updated our anonymous Product Feedback Survey and we’d welcome your feedback.

Source de l’article sur us-cert.gov

SUMMARY

Note: This Cybersecurity Advisory (CSA) is part of an ongoing #StopRansomware effort to publish advisories for network defenders that detail various ransomware variants and various ransomware threat actors. These #StopRansomware advisories detail historically and recently observed tactics, techniques, and procedures (TTPs) and indicators of compromise (IOCs) to help organizations protect against ransomware. Visit stopransomware.gov to see all #StopRansomware advisories and to learn about other ransomware threats and no-cost resources.

The United States National Security Agency (NSA), the U.S. Federal Bureau of Investigation (FBI), the U.S. Cybersecurity and Infrastructure Security Agency (CISA), the U.S. Department of Health and Human Services (HHS), the Republic of Korea (ROK) National Intelligence Service (NIS), and the ROK Defense Security Agency (DSA) (hereafter referred to as the “authoring agencies”) are issuing this joint Cybersecurity Advisory (CSA) to highlight ongoing ransomware activity against Healthcare and Public Health Sector organizations and other critical infrastructure sector entities.

This CSA provides an overview of Democratic People’s Republic of Korea (DPRK) state-sponsored ransomware and updates the July 6, 2022, joint CSA North Korean State-Sponsored Cyber Actors Use Maui Ransomware to Target the Healthcare and Public Health Sector. This advisory highlights TTPs and IOCs DPRK cyber actors used to gain access to and conduct ransomware attacks against Healthcare and Public Health (HPH) Sector organizations and other critical infrastructure sector entities, as well as DPRK cyber actors’ use of cryptocurrency to demand ransoms.

The authoring agencies assess that an unspecified amount of revenue from these cryptocurrency operations supports DPRK national-level priorities and objectives, including cyber operations targeting the United States and South Korea governments—specific targets include Department of Defense Information Networks and Defense Industrial Base member networks. The IOCs in this product should be useful to sectors previously targeted by DPRK cyber operations (e.g., U.S. government, Department of Defense, and Defense Industrial Base). The authoring agencies highly discourage paying ransoms as doing so does not guarantee files and records will be recovered and may pose sanctions risks.

For additional information on state-sponsored DPRK malicious cyber activity, see CISA’s North Korea Cyber Threat Overview and Advisories webpage.

Download the PDF version of this report: pdf, 661 kb.

For a downloadable copy of IOCs, see

AA23-040A STIX XML (XML, 196.24 KB )

TECHNICAL DETAILS

Note: This advisory uses the MITRE ATT&CK for Enterprise framework, version 12. See MITRE ATT&CK for Enterprise for all referenced tactics and techniques.

This CSA is supplementary to previous reports on malicious cyber actor activities involving DPRK ransomware campaigns—namely Maui and H0lyGh0st ransomware. The authoring agencies are issuing this advisory to highlight additional observed TTPs DPRK cyber actors are using to conduct ransomware attacks targeting South Korean and U.S. healthcare systems.

Observable TTPs

The TTPs associated with DPRK ransomware attacks include those traditionally observed in ransomware operations. Additionally, these TTPs span phases from acquiring and purchasing infrastructure to concealing DPRK affiliation:

  • Acquire Infrastructure [T1583]. DPRK actors generate domains, personas, and accounts; and identify cryptocurrency services to conduct their ransomware operations. Actors procure infrastructure, IP addresses, and domains with cryptocurrency generated through illicit cybercrime, such as ransomware and cryptocurrency theft.
  • Obfuscate Identity. DPRK actors purposely obfuscate their involvement by operating with or under third-party foreign affiliate identities and use third-party foreign intermediaries to receive ransom payments.
  • Purchase VPNs and VPSs [T1583.003]. DPRK cyber actors will also use virtual private networks (VPNs) and virtual private servers (VPSs) or third-country IP addresses to appear to be from innocuous locations instead of from DPRK.
  • Gain Access [TA0001]. Actors use various exploits of common vulnerabilities and exposures (CVE) to gain access and escalate privileges on networks. Recently observed CVEs that actors used to gain access include remote code execution in the Apache Log4j software library (known as Log4Shell) and remote code execution in unpatched SonicWall SMA 100 appliances [T1190 and T1133]. Observed CVEs used include:
  • CVE 2021-44228
  • CVE-2021-20038
  • CVE-2022-24990

Actors also likely spread malicious code through Trojanized files for “X-Popup,” an open source messenger commonly used by employees of small and medium hospitals in South Korea [T1195].

The actors spread malware by leveraging two domains: xpopup.pe[.]kr and xpopup.com. xpopup.pe[.]kr is registered to IP address 115.68.95[.]128 and xpopup[.]com is registered to IP address 119.205.197[.]111. Related file names and hashes are listed in table 1.

Table 1: Malicious file names and hashes spread by xpopup domains
File Name MD5 Hash
xpopup.rar 1f239db751ce9a374eb9f908c74a31c9
X-PopUp.exe 6fb13b1b4b42bac05a2ba629f04e3d03
X-PopUp.exe cf8ba073db7f4023af2b13dd75565f3d
xpopup.exe 4e71d52fc39f89204a734b19db1330d3
x-PopUp.exe 43d4994635f72852f719abb604c4a8a1
xpopup.exe 5ae71e8440bf33b46554ce7a7f3de666
  • Move Laterally and Discovery [TA0007, TA0008]. After initial access, DPRK cyber actors use staged payloads with customized malware to perform reconnaissance activities, upload and download additional files and executables, and execute shell commands [T1083, T1021]. The staged malware is also responsible for collecting victim information and sending it to the remote host controlled by the actors [TA0010].
  • Employ Various Ransomware Tools [TA0040]. Actors have used privately developed ransomware, such as Maui and H0lyGh0st [T1486]. Actors have also been observed using or possessing publically available tools for encryption, such as BitLocker, Deadbolt, ech0raix, GonnaCry, Hidden Tear, Jigsaw, LockBit 2.0, My Little Ransomware, NxRansomware, Ryuk, and YourRansom [T1486]. In some cases, DPRK actors have portrayed themselves as other ransomware groups, such as the REvil ransomware group. For IOCs associated with Maui and H0lyGh0st ransomware usage, please see Appendix B.
  • Demand Ransom in Cryptocurrency. DPRK cyber actors have been observed setting ransoms in bitcoin [T1486].
  • Actors are known to communicate with victims via Proton Mail email accounts. For private companies in the healthcare sector, actors may threaten to expose a company’s proprietary data to competitors if ransoms are not paid. Bitcoin wallet addresses possibly used by DPRK cyber actors include:
    • 1MTHBCrBKYEthfa16zo9kabt4f9jMJz8Rm
    • bc1q80vc4yjgg6umedkut3e9mhehxl4q4dcjjyzh59
    • 1J8spy62o7z2AjQxoUpiCGnBh5cRWKVWJC
    • 16ENLdHbnmDcEV8iqN4vuyZHa7sSdYRh76
    • bc1q3wzxvu8yhs8h7mlkmf7277wyklkah9k4sm9anu
    • bc1q8xyt4jxhw7mgqpwd6qfdjyxgvjeuz57jxrvgk9
    • 1NqihEqYaQaWiZkPVdSMiTbt7dTy1LMxgX
    • bc1qxrpevck3pq1yzrx2pq2rkvkvy0jnm56nzjv6pw
    • 14hVKm7Ft2rxDBFTNkkRC3kGstMGp2A4hk
    • 1KCwfCUgnSy3pzNX7U1i5NwFzRtth4bRBc
    • 16sYqXancDDiijcuruZecCkdBDwDf4vSEC
    • 1N6JphHFaYmYaokS5xH31Z67bvk4ykd9CP
    • LZ1VNJfn6mWjPzkCyoBvqWaBZYXAwn135
    • 1KmWW6LgdgykBBrSXrFu9kdoHz95Fe9kQF
    • 1FX4W9rrG4F3Uc7gJ18GCwGab8XuW8Ajy2
    • bc1qlqgu2l2kms5338zuc95kxavctzyy0v705tpvyc
    • bc1qy6su7vrh7ts5ng2628escmhr98msmzg62ez2sp
    • bc1q8t69gpxsezdcr8w6tfzp3jeptq4tcp2g9d0mwy
    • bc1q9h7yj79sqm4t536q0fdn7n4y2atsvvl22m28ep
    • bc1qj6y72rk039mqpgtcy7mwjd3eum6cx6027ndgmd
    • bc1qcp557vltuu3qc6pk3ld0ayagrxuf2thp3pjzpe
    • bc1ql8wsflrjf9zlusauynzjm83mupq6c9jz9vnqxg
    • bc1qx60ec3nfd5yhsyyxkzkpts54w970yxj84zrdck
    • bc1qunqnjdlvqkjuhtclfp8kzkjpvdz9qnk898xczp
    • bc1q6024d73h48fnhwswhwt3hqz2lzw6x99q0nulm4
    • bc1qwdvexlyvg3mqvqw7g6l09qup0qew80wjj9jh7x
    • bc1qavrtge4p7dmcrnvhlvuhaarx8rek76wxyk7dgg
    • bc1qagaayd57vr25dlqgk7f00nhz9qepqgnlnt4upu
    • bc1quvnaxnpqlzq3mdhfddh35j7e7ufxh3gpc56hca
    • bc1qu0pvfmtxawm8s99lcjvxapungtsmkvwyvak6cs
    • bc1qg3zlxxhhcvt6hkuhmqml8y9pas76cajcu9ltdl
    • bc1qn7a3g23nzpuytchyyteyhkcse84cnylznl3j32
    • bc1qhfmqstxp3yp9muvuz29wk77vjtdyrkff4nrxpu
    • bc1qnh8scrvuqvlzmzgw7eesyrmtes9c5m78duetf3
    • bc1q7qry3lsrphmnw3exs7tkwzpvzjcxs942aq8n0y
    • bc1qcmlcxfsy0zlqhh72jvvc4rh7hvwhx6scp27na0
    • bc1q498fn0gauj2kkjsg35mlwk2cnxhaqlj7hkh8xy
    • bc1qnz4udqkumjghnm2a3zt0w3ep8fwdcyv3krr3jq
    • bc1qk0saaw7p0wrwla6u7tfjlxrutlgrwnudzx9tyw
    • bc1qyue2pgjk09ps7qvfs559k8kee3jkcw4p4vdp57
    • bc1q6qfkt06xmrpclht3acmq00p7zyy0ejydu89zwv
    • bc1qmge6a7sp659exnx78zhm9zgrw88n6un0rl9trs
    • bc1qcywkd7zqlwmjy36c46dpf8cq6ts6wgkjx0u7cn

MITIGATIONS

Note: These mitigations align with the Cross-Sector Cybersecurity Performance Goals (CPGs) developed by CISA and the U.S. National Institute of Standards and Technology (NIST). The CPGs provide a minimum set of practices and protections that CISA and NIST recommend all organizations implement. CISA and NIST based the CPGs on existing cybersecurity frameworks and guidance to protect against the most common and impactful threats, tactics, techniques, and procedures. For more information on the CPGs, including additional recommended baseline protections, see cisa.gov/cpg.

The authoring agencies urge HPH organizations to:

  • Limit access to data by authenticating and encrypting connections (e.g., using public key infrastructure certificates in virtual private network (VPN) and transport layer security (TLS) connections) with network services, Internet of Things (IoT) medical devices, and the electronic health record system [CPG 3.3].
  • Implement the principle of least privilege by using standard user accounts on internal systems instead of administrative accounts [CPG 1.5], which grant excessive system administration privileges.
  • Turn off weak or unnecessary network device management interfaces, such as Telnet, SSH, Winbox, and HTTP for wide area networks (WANs) and secure with strong passwords and encryption when enabled.
  • Protect stored data by masking the permanent account number (PAN) when displayed and rendering it unreadable when stored—through cryptography, for example.
  • Secure the collection, storage, and processing practices for personally identifiable information (PII)/protected health information (PHI), per regulations such as the Health Insurance Portability and Accountability Act of 1996 (HIPAA). Implementing HIPAA security measures could prevent the introduction of malware to the system [CPG 3.4].
    • Secure PII/ PHI at collection points and encrypt the data at rest and in transit using technologies, such as TLS. Only store personal patient data on internal systems that are protected by firewalls, and ensure extensive backups are available.
    • Create and regularly review internal policies that regulate the collection, storage, access, and monitoring of PII/PHI.
  • Implement and enforce multi-layer network segmentation with the most critical communications and data resting on the most secure and reliable layer [CPG 8.1].
  • Use monitoring tools to observe whether IoT devices are behaving erratically due to a compromise [CPG 3.1].

In addition, the authoring agencies urge all organizations, including HPH Sector organizations, to apply the following recommendations to prepare for and mitigate ransomware incidents:

  • Maintain isolated backups of data, and regularly test backup and restoration [CPG 7.3]. These practices safeguard an organization’s continuity of operations or at least minimize potential downtime from a ransomware incident and protect against data losses.
    • Ensure all backup data is encrypted, immutable (i.e., cannot be altered or deleted), and covers the entire organization’s data infrastructure.
  • Create, maintain, and exercise a basic cyber incident response plan and associated communications plan that includes response procedures for a ransomware incident [CPG 7.1, 7.2].
  • Install updates for operating systems, software, and firmware as soon as they are released [CPG 5.1]. Timely patching is one of the most efficient and cost-effective steps an organization can take to minimize its exposure to cybersecurity threats. Regularly check for software updates and end-of-life notifications and prioritize patching known exploited vulnerabilities. Consider leveraging a centralized patch management system to automate and expedite the process.
  • If you use Remote Desktop Protocol (RDP), or other potentially risky services, secure and monitor them closely [CPG 5.4].
    • Limit access to resources over internal networks, especially by restricting RDP and using virtual desktop infrastructure. After assessing risks, if RDP is deemed operationally necessary, restrict the originating sources, and require phishing-resistant multifactor authentication (MFA) to mitigate credential theft and reuse [CPG 1.3]. If RDP must be available externally, use a VPN, virtual desktop infrastructure, or other means to authenticate and secure the connection before allowing RDP to connect to internal devices. Monitor remote access/RDP logs, enforce account lockouts after a specified number of attempts to block brute force campaigns, log RDP login attempts, and disable unused remote access/RDP ports [CPG 1.1, 3.1].
    • Ensure devices are properly configured and that security features are enabled. Disable ports and protocols not in use for a business purpose (e.g., RDP Transmission Control Protocol port 3389).
    • Restrict the Server Message Block (SMB) protocol within the network to only access necessary servers and remove or disable outdated versions of SMB (i.e., SMB version 1). Threat actors use SMB to propagate malware across organizations.
    • Review the security posture of third-party vendors and those interconnected with your organization. Ensure all connections between third-party vendors and outside software or hardware are monitored and reviewed for suspicious activity [CPG 5.6, 6.2].
    • Implement application control policies that only allow systems to execute known and permitted programs [CPG 2.1].
    • Open document readers in protected viewing modes to help prevent active content from running.
  • Implement a user training program and phishing exercises [CPG 4.3] to raise awareness among users about the risks of visiting websites, clicking on links, and opening attachments. Reinforce the appropriate user response to phishing and spearphishing emails.
  • Require phishing-resistant MFA for as many services as possible [CPG 1.3]—particularly for webmail, VPNs, accounts that access critical systems, and privileged accounts that manage backups.
  • Use strong passwords [CPG 1.4] and avoid reusing passwords for multiple accounts. See CISA Tip Choosing and Protecting Passwords and National Institute of Standards and Technology (NIST) Special Publication 800-63B: Digital Identity Guidelines for more information.
  • Require administrator credentials to install software [CPG 1.5].
  • Audit user accounts with administrative or elevated privileges [CPG 1.5] and configure access controls with least privilege in mind.
  • Install and regularly update antivirus and antimalware software on all hosts.
  • Only use secure networks. Consider installing and using a VPN.
  • Consider adding an email banner to messages coming from outside your organizations [CPG 8.3] indicating that they are higher risk messages.
  • Consider participating in CISA’s no-cost Automated Indicator Sharing (AIS) program to receive real-time exchange of machine-readable cyber threat indicators and defensive measures.

If a ransomware incident occurs at your organization:

  • Follow your organization’s ransomware response checklist.
  • Scan backups. If possible, scan backup data with an antivirus program to check that it is free of malware. This should be performed using an isolated, trusted system to avoid exposing backups to potential compromise.
  • U.S. organizations: Follow the notification requirements as outlined in your cyber incident response plan. Report incidents to appropriate authorities; in the U.S., this would include the FBI at a local FBI Field Office, CISA at cisa.gov/report, or the U.S. Secret Service (USSS) at a USSS Field Office.
  • South Korean organizations: Please report incidents to NIS, KISA (Korea Internet & Security Agency), and KNPA (Korean National Police Agency).
  • Apply incident response best practices found in the joint Cybersecurity Advisory, Technical Approaches to Uncovering and Remediating Malicious Activity, developed by CISA and the cybersecurity authorities of Australia, Canada, New Zealand, and the United Kingdom.

RESOURCES

Stairwell provided a YARA rule to identify Maui ransomware, and a Proof of Concept public RSA key extractor at the following link:
https://www.stairwell.com/news/threat-research-report-maui-ransomware/

REQUEST FOR INFORMATION

The FBI is seeking any information that can be shared, to include boundary logs showing communication to and from foreign IP addresses, bitcoin wallet information, the decryptor file, and/or benign samples of encrypted files. As stated above, the authoring agencies discourage paying ransoms. Payment does not guarantee files will be recovered and may embolden adversaries to target additional organizations, encourage other criminal actors to engage in the distribution of ransomware, and/or fund illicit activities. However, the agencies understand that when victims are faced with an inability to function, all options are evaluated to protect shareholders, employees, and customers.

Regardless of whether you or your organization decide to pay a ransom, the authoring agencies urge you to promptly report ransomware incidents using the contact information above.

ACKNOWLEDGEMENTS

NSA, FBI, CISA, and HHS would like to thank ROK NIS and DSA for their contributions to this CSA.

Disclaimer of endorsement

The information and opinions contained in this document are provided “as is” and without any warranties or guarantees. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favoring by the United States Government, and this guidance shall not be used for advertising or product endorsement purposes.

Trademark recognition

Microsoft Threat Intelligence Center is a registered trademark of Microsoft Corporation. Apache®, Sonicwall, and Apache Log4j are trademarks of Apache Software Foundation. TerraMaster Operating System is a registered trademark of Octagon Systems.

Purpose

This document was developed in furtherance of the authors’ cybersecurity missions, including their responsibilities to identify and disseminate threats, and to develop and issue cybersecurity specifications and mitigations. This information may be shared broadly to reach all appropriate stakeholders.

Appendix A: CVE Details
CVE-2021-44228     CVSS 3.0: 10 (Critical)
Vulnerability Description
Apache Log4j2 2.0-beta9 through 2.15.0 (excluding security releases 2.12.2, 2.12.3, and 2.3.1) JNDI features used in configuration, log messages, and parameters do not protect against attacker controlled LDAP and other JNDI related endpoints. An attacker who can control log messages or log message parameters can execute arbitrary code loaded from LDAP servers when message lookup substitution is enabled. From log4j 2.15.0, this behavior has been disabled by default. From version 2.16.0 (along with 2.12.2, 2.12.3, and 2.3.1), this functionality has been completely removed. Note that this vulnerability is specific to log4j-core and does not affect log4net, log4cxx, or other Apache Logging Services projects.
Recommended Mitigations
Apply patches provided by vendor and perform required system updates.
Detection Methods
See vendors’ Guidance For Preventing, Detecting, and Hunting for Exploitation of the Log4j 2 Vulnerability.
Vulnerable Technologies and Versions
There are numerous vulnerable technologies and versions associated with CVE-2021-44228. For a full list, please check https://nvd.nist.gov/vuln/detail/CVE-2021-44228.
See https://nvd.nist.gov/vuln/detail/CVE-2021-44228 for more information.
CVE-2021-20038     CVSS 3.0: 9.8 (Critical)
Vulnerability Description
A Stack-based buffer overflow vulnerability in SMA100 Apache httpd server’s mod_cgi module environment variables allows a remote unauthenticated attacker to potentially execute code as a ‘nobody’ user in the appliance. This vulnerability affected SMA 200, 210, 400, 410 and 500v appliances firmware 10.2.0.8-37sv, 10.2.1.1-19sv, 10.2.1.2-24sv and earlier versions.
Recommended Mitigations
Apply all appropriate vendor updates
Upgrade to:

  • SMA 100 Series – (SMA 200, 210, 400, 410, 500v (ESX, Hyper-V, KVM, AWS, Azure):
  • SonicWall SMA100 build versions 10.2.0.9-41sv or later
  • SonicWall SMA100 build versions 10.2.1.3-27sv or later

System administrators should refer to the SonicWall Security Advisories in the reference section to determine affected applications/systems and appropriate fix actions.

Support for 9.0.0 firmware ended on 10/31/2021. Customers still using that firmware are requested to upgrade to the latest 10.2.x versions.

Vulnerable Technologies and Versions
Sonicwall Sma 200 Firmware 10.2.0.8-37Sv
Sonicwall Sma 200 Firmware 10.2.1.1-19Sv
Sonicwall Sma 200 Firmware 10.2.1.2-24Sv
Sonicwall Sma 210 Firmware 10.2.0.8-37Sv
Sonicwall Sma 210 Firmware 10.2.1.1-19Sv
Sonicwall Sma 210 Firmware 10.2.1.2-24Sv
Sonicwall Sma 410 Firmware 10.2.0.8-37Sv
Sonicwall Sma 410 Firmware 10.2.1.1-19Sv
Sonicwall Sma 410 Firmware 10.2.1.2-24Sv
Sonicwall Sma 400 Firmware 10.2.0.8-37Sv
Sonicwall Sma 400 Firmware 10.2.1.1-19Sv
Sonicwall Sma 400 Firmware 10.2.1.2-24Sv
Sonicwall Sma 500V Firmware 10.2.0.8-37Sv
Sonicwall Sma 500V Firmware 10.2.1.1-19Sv
Sonicwall Sma 500V Firmware 10.2.1.2-24Sv
See https://nvd.nist.gov/vuln/detail/CVE-2021-20038 for more information.
CVE-2022-24990    CVSS 3.x: N/A
Vulnerability Description
The TerraMaster OS Unauthenticated Remote Command Execution via PHP Object Instantiation Vulnerability is characterized by scanning activity targeting a flaw in the script enabling a remote adversary to execute commands on the target endpoint. The vulnerability is created by improper input validation of the webNasIPS component in the api.php script and resides on the TNAS device appliances’ operating system where users manage storage, backup data, and configure applications. By exploiting the script flaw a remote unauthenticated attacker can pass specially crafted data to the application and execute arbitrary commands on the target system. This may result in complete compromise of the target system, including the exfiltration of information. TNAS devices can be chained to acquire unauthenticated remote code execution with highest privileges.
Recommended Mitigations
Install relevant vendor patches. This vulnerability was patched in TOS version 4.2.30
Vulnerable Technologies and Versions
TOS v 4.2.29
See https://octagon.net/blog/2022/03/07/cve-2022-24990-terrmaster-tos-unauthenticated-remote-command-execution-via-php-object-instantiation/ and https://forum.terra-master.com/en/viewtopic.php?t=3030 for more information.
Appendix B: Indicators of Compromise (IOCs)

The IOC section includes hashes and IP addresses for the Maui and H0lyGh0st ransomware variants—as well as custom malware implants assumedly developed by DPRK cyber actors, such as remote access trojans (RATs), loaders, and other tools—that enable subsequent deployment of ransomware. For additional Maui IOCs, see joint CSA North Korean State-Sponsored Cyber Actors Use Maui Ransomware to Target the Healthcare and Public Health Sector.

Table 2 lists MD5 and SHA256 hashes associated with malware implants, RATs, and other tools used by DPRK cyber actors, including tools that drop Maui ransomware files.

Table 2: File names and hashes of malicious implants, RATs, and tools
MD5Hash SHA256Hash
079b4588eaa99a1e802adf5e0b26d8aa f67ee77d6129bd1bcd5d856c0fc5314169b946d32b8abaa4e680bb98130b38e7
0e9e256d8173854a7bc26982b1dde783
12c15a477e1a96120c09a860c9d479b3 6263e421e397db821669420489d2d3084f408671524fd4e1e23165a16dda2225
131fc4375971af391b459de33f81c253
17c46ed7b80c2e4dbea6d0e88ea0827c b9af4660da00c7fa975910d0a19fda072031c15fad1eef935a609842c51b7f7d
1875f6a68f70bee316c8a6eda9ebf8de 672ec8899b8ee513dbfc4590440a61023846ddc2ca94c88ae637144305c497e7
1a74c8d8b74ca2411c1d3d22373a6769 ba8f9e7afe5f78494c111971c39a89111ef9262bf23e8a764c6f65c818837a44
1f6d9f8fbdbbd4e6ed8cd73b9e95a928 4f089afa51fd0c1b2a39cc11cedb3a4a326111837a5408379384be6fe846e016
2d02f5499d35a8dffb4c8bc0b7fec5c2 830207029d83fd46a4a89cd623103ba2321b866428aa04360376e6a390063570
2e18350194e59bc6a2a3f6d59da11bd8 655aa64860f1655081489cf85b77f72a49de846a99dd122093db4018434b83ae
3bd22e0ac965ebb6a18bb71ba39e96dc 6b7f566889b80d1dba4f92d5e2fb2f5ef24f57fcfd56bb594978dffe9edbb9eb
40f21743f9cb927b2c84ecdb7dfb14a6 5081f54761947bc9ce4aa2a259a0bd60b4ec03d32605f8e3635c4d4edaf48894
4118d9adce7350c3eedeb056a3335346 5b7ecf7e9d0715f1122baf4ce745c5fcd769dee48150616753fec4d6da16e99e
43e756d80225bdf1200bc34eef5adca8 afb2d4d88f59e528f0e388705113ae54b7b97db4f03a35ae43cc386a48f263a0
47791bf9e017e3001ddc68a7351ca2d6 863b707873f7d653911e46885e261380b410bb3bf6b158daefb47562e93cb657
505262547f8879249794fc31eea41fc6 f32f6b229913d68daad937cc72a57aa45291a9d623109ed48938815aa7b6005c
5130888a0ad3d64ad33c65de696d3fa2 c92c1f3e77a1876086ce530e87aa9c1f9cbc5e93c5e755b29cad10a2f3991435
58ad3103295afcc22bde8d81e77c282f 18b75949e03f8dcad513426f1f9f3ca209d779c24cd4e941d935633b1bec00cb
5be1e382cd9730fbe386b69bd8045ee7 5ad106e333de056eac78403b033b89c58b4c4bdda12e2f774625d47ccfd3d3ae
5c6f9c83426c6d33ff2d4e72c039b747 a3b7e88d998078cfd8cdf37fa5454c45f6cbd65f4595fb94b2e9c85fe767ad47
640e70b0230dc026eff922fb1e44c2ea 6319102bac226dfc117c3c9e620cd99c7eafbf3874832f2ce085850aa042f19c
67f4dad1a94ed8a47283c2c0c05a7594 3fe624c33790b409421f4fa2bb8abfd701df2231a959493c33187ed34bec0ae7
70652edadedbacfd30d33a826853467d 196fb1b6eff4e7a049cea323459cfd6c0e3900d8d69e1d80bffbaabd24c06eba
739812e2ae1327a94e441719b885bd19 6122c94cbfa11311bea7129ecd5aea6fae6c51d23228f7378b5f6b2398728f67
76c3d2092737d964dfd627f1ced0af80 bffe910904efd1f69544daa9b72f2a70fb29f73c51070bde4ea563de862ce4b1
802e7d6e80d7a60e17f9ffbd62fcbbeb 87bdb1de1dd6b0b75879d8b8aef80b562ec4fad365d7abbc629bcfc1d386afa6
827103a6b6185191fd5618b7e82da292
830bc975a04ab0f62bfedf27f7aca673
85995257ac07ae5a6b4a86758a2283d7
85f6e3e3f0bdd0c1b3084fc86ee59d19 f1576627e8130e6d5fde0dbe3dffcc8bc9eef1203d15fcf09cd877ced1ccc72a
87a6bda486554ab16c82bdfb12452e8b 980bb08ef3e8afcb8c0c1a879ec11c41b29fd30ac65436495e69de79c555b2be
891db50188a90ddacfaf7567d2d0355d 0837dd54268c373069fc5c1628c6e3d75eb99c3b3efc94c45b73e2cf9a6f3207
894de380a249e677be2acb8fbdfba2ef
8b395cc6ecdec0900facf6e93ec48fbb
92a6c017830cda80133bf97eb77d3292 d1aba3f95f11fc6e5fec7694d188919555b7ff097500e811ff4a5319f8f230be
9b0e7c460a80f740d455a7521f0eada1 45d8ac1ac692d6bb0fe776620371fca02b60cac8db23c4cc7ab5df262da42b78
9b9d4cb1f681f19417e541178d8c75d7 f5f6e538001803b0aa008422caf2c3c2a79b2eeee9ddc7feda710e4aba96fea4
a1f9e9f5061313325a275d448d4ddd59 dfdd72c9ce1212f9d9455e2bca5a327c88d2d424ea5c086725897c83afc3d42d
a452a5f693036320b580d28ee55ae2a3 99b0056b7cc2e305d4ccb0ac0a8a270d3fceb21ef6fc2eb13521a930cea8bd9f
a6e1efd70a077be032f052bb75544358 3b9fe1713f638f85f20ea56fd09d20a96cd6d288732b04b073248b56cdaef878
ad4eababfe125110299e5a24be84472e a557a0c67b5baa7cf64bd4d42103d3b2852f67acf96b4c5f14992c1289b55eaa
b1c1d28dc7da1d58abab73fa98f60a83 38491f48d0cbaab7305b5ddca64ba41a2beb89d81d5fb920e67d0c7334c89131
b6f91a965b8404d1a276e43e61319931
bdece9758bf34fcad9cba1394519019b 9d6de05f9a3e62044ad9ae66111308ccb9ed2ee46a3ea37d85afa92e314e7127
c3850f4cc12717c2b54753f8ca5d5e0e 99b448e91669b92c2cc3417a4d9711209509274dab5d7582baacfab5028a818c
c50b839f2fc3ce5a385b9ae1c05def3a 458d258005f39d72ce47c111a7d17e8c52fe5fc7dd98575771640d9009385456
cf236bf5b41d26967b1ce04ebbdb4041 60425a4d5ee04c8ae09bfe28ca33bf9e76a43f69548b2704956d0875a0f25145
d0e203e8845bf282475a8f816340f2e8 f6375c5276d1178a2a0fe1a16c5668ce523e2f846c073bf75bb2558fdec06531
ddb1f970371fa32faae61fc5b8423d4b dda53eee2c5cb0abdbf5242f5e82f4de83898b6a9dd8aa935c2be29bafc9a469
f2f787868a3064407d79173ac5fc0864 92adc5ea29491d9245876ba0b2957393633c9998eb47b3ae1344c13a44cd59ae
fda3a19afa85912f6dc8452675245d6b 56925a1f7d853d814f80e98a1c4890b0a6a84c83a8eded34c585c98b2df6ab19
0054147db54544d77a9efd9baf5ec96a80b430e170d6e7c22fcf75261e9a3a71
151ab3e05a23e9ccd03a6c49830dabb9e9281faf279c31ae40b13e6971dd2fb8
1c926fb3bd99f4a586ed476e4683163892f3958581bf8c24235cd2a415513b7f
1f8dcfaebbcd7e71c2872e0ba2fc6db81d651cf654a21d33c78eae6662e62392
f226086b5959eb96bd30dec0ffcbf0f09186cd11721507f416f1c39901addafb
23eff00dde0ee27dabad28c1f4ffb8b09e876f1e1a77c1e6fb735ab517d79b76
586f30907c3849c363145bfdcdabe3e2e4688cbd5688ff968e984b201b474730
8ce219552e235dcaf1c694be122d6339ed4ff8df70bf358cd165e6eb487ccfc5
90fb0cd574155fd8667d20f97ac464eca67bdb6a8ee64184159362d45d79b6a4
c2904dc8bbb569536c742fca0c51a766e836d0da8fac1c1abd99744e9b50164f
ca932ccaa30955f2fffb1122234fb1524f7de3a8e0044de1ed4fe05cab8702a5
f6827dc5af661fbb4bf64bc625c78283ef836c6985bb2bfb836bd0c8d5397332
f78cabf7a0e7ed3ef2d1c976c1486281f56a6503354b87219b466f2f7a0b65c4

Table 3 lists MD5 and SHA256 hashes are associated with Maui Ransomware files.

Table 3: File names and hashes of Maui ransomware files
MD5 Hash SHA256 Hash
4118d9adce7350c3eedeb056a3335346 5b7ecf7e9d0715f1122baf4ce745c5fcd769dee48150616753fec4d6da16e99e
9b0e7c460a80f740d455a7521f0eada1 45d8ac1ac692d6bb0fe776620371fca02b60cac8db23c4cc7ab5df262da42b78
fda3a19afa85912f6dc8452675245d6b 56925a1f7d853d814f80e98a1c4890b0a6a84c83a8eded34c585c98b2df6ab19
2d02f5499d35a8dffb4c8bc0b7fec5c2 830207029d83fd46a4a89cd623103ba2321b866428aa04360376e6a390063570
c50b839f2fc3ce5a385b9ae1c05def3a 458d258005f39d72ce47c111a7d17e8c52fe5fc7dd98575771640d9009385456
a452a5f693036320b580d28ee55ae2a3 99b0056b7cc2e305d4ccb0ac0a8a270d3fceb21ef6fc2eb13521a930cea8bd9f
a6e1efd70a077be032f052bb75544358 3b9fe1713f638f85f20ea56fd09d20a96cd6d288732b04b073248b56cdaef878
802e7d6e80d7a60e17f9ffbd62fcbbeb 87bdb1de1dd6b0b75879d8b8aef80b562ec4fad365d7abbc629bcfc1d386afa6
0054147db54544d77a9efd9baf5ec96a80b430e170d6e7c22fcf75261e9a3a71

Table 4 lists MD5 and SHA256 hashes associated with H0lyGh0st Ransomware files.

SHA256 Hash
99fc54786a72f32fd44c7391c2171ca31e72ca52725c68e2dde94d04c286fccd*
F8fc2445a9814ca8cf48a979bff7f182d6538f4d1ff438cf259268e8b4b76f86*
Bea866b327a2dc2aa104b7ad7307008919c06620771ec3715a059e675d9f40af*
6e20b73a6057f8ff75c49e1b7aef08abfcfe4e418e2c1307791036f081335c2d
f4d10b08d7dacd8fe33a6b54a0416eecdaed92c69c933c4a5d3700b8f5100fad
541825cb652606c2ea12fd25a842a8b3456d025841c3a7f563655ef77bb67219
2d978df8df0cf33830aba16c6322198e5889c67d49b40b1cb1eb236bd366826d
414ed95d14964477bebf86dced0306714c497cde14dede67b0c1425ce451d3d7

Df0c7bb88e3c67d849d78d13cee30671b39b300e0cda5550280350775d5762d8

MD5 Hash
a2c2099d503fcc29478205f5aef0283b
9c516e5b95a7e4169ecbd133ed4d205f
d6a7b5db62bf7815a10a17cdf7ddbd4b
c6949a99c60ef29d20ac8a9a3fb58ce5
4b20641c759ed563757cdd95c651ee53
25ee4001eb4e91f7ea0bc5d07f2a9744
18126be163eb7df2194bb902c359ba8e
eaf6896b361121b2c315a35be837576d
e4ee611533a28648a350f2dab85bb72a
e268cb7ab778564e88d757db4152b9fa

* from Microsoft blog post on h0lygh0st

CONTACT INFORMATION

NSA Client Requirements / General Cybersecurity Inquiries: CybersecurityReports@nsa.gov
Defense Industrial Base Inquiries and Cybersecurity Services: DIB_Defense@cyber.nsa.gov
To report incidents and anomalous activity related to information found in this Joint Cybersecurity Advisory, contact CISA’s 24/7 Operations Center at Report@cisa.gov or (888) 282-0870 or your local FBI field office at www.fbi.gov/contact-us/field. When available, please include the following information regarding the incident: date, time, and location of the incident; type of activity; number of people affected; type of equipment used for the activity; the name of the submitting company or organization; and a designated point of contact.

Media Inquiries / Press Desk:

Source de l’article sur us-cert.gov

Summary

The Cybersecurity and Infrastructure Security Agency (CISA) and the Federal Bureau of Investigation (FBI) are releasing this joint Cybersecurity Advisory (CSA) in response to the ongoing ransomware campaign, known as “ESXiArgs.” Malicious actors may be exploiting known vulnerabilities in VMware ESXi servers that are likely running unpatched and out-of-service or out-of-date versions of VMware ESXi software to gain access and deploy ransomware. The ESXiArgs ransomware encrypts configuration files on ESXi servers, potentially rendering virtual machines (VMs) unusable. 

CISA has released an ESXiArgs recovery script at github.com/cisagov/ESXiArgs-Recover. Organizations that have fallen victim to ESXiArgs ransomware can use this script to attempt to recover their files. This CSA provides guidance on how to use the script.
ESXiArgs actors have compromised over 3,800 servers globally. CISA and FBI encourage all organizations managing VMware ESXi servers to: 

  • Update servers to the latest version of VMware ESXi software
  • Harden ESXi hypervisors by disabling the Service Location Protocol (SLP) service, and 
  • Ensure the ESXi hypervisor is not exposed to the public internet. 

If malicious actors have compromised your organization with ESXiArgs ransomware, CISA and FBI recommend following the script and guidance provided in this CSA to attempt to recover access to your files.  

Download the PDF version of this report: 

Note: CISA and FBI will update this CSA as more information becomes available.

Technical Details

Open-source reporting indicates that malicious actors are exploiting known vulnerabilities in VMware ESXi software to gain access to servers and deploy ESXiArgs ransomware. The actors are likely targeting end-of-life ESXi servers or ESXi servers that do not have the available ESXi software patches applied.[1] 

ESXiArgs ransomware encrypts certain configuration files on ESXi servers, potentially rendering VMs unusable. Specifically, the ransomware encrypts configuration files associated with the VMs; it does not encrypt flat files. As a result, it is possible, in some cases, for victims to reconstruct the encrypted configuration files based on the unencrypted flat file. The recovery script documented below automates the process of recreating configuration files. The full list of file extensions encrypted by the malware is: vmdkvmxvmxfvmsdvmsnvswpvmssnvramvmem.

Recovery Guidance

CISA and FBI do not encourage paying the ransom as payment does not guarantee victim files will be recovered. Furthermore, payment may also embolden adversaries to target additional organizations, encourage other criminal actors to engage in the distribution of ransomware, and/or fund illicit activities. Regardless of whether you or your organization have decided to pay the ransom, CISA and FBI urge you to promptly report ransomware incidents to a local FBI Field Office, or to CISA at cisa.gov/report

CISA is providing these steps to enable organizations to attempt recovery of their VMs. CISA’s GitHub ESXiArgs recovery script, which also outlines these steps, is available at github.com/cisagov/ESXiArgs-Recover. CISA is aware that some organizations have reported success in recovering files without paying ransoms. CISA’s script is based on findings published by third-party researchers.[2] 

Any organization seeking to use CISA’s ESXiArgs recovery script should carefully review the script to determine if it is appropriate for their environment before deploying it. This script does not seek to delete the encrypted configuration files, but instead seeks to create new configuration files that enable access to the VMs. While CISA works to ensure that scripts like this one are safe and effective, this script is delivered without warranty, either implicit or explicit. Do not use this script without understanding how it may affect your system. CISA does not assume liability for damage caused by this script. Note: Organizations that run into problems with the script can create a GitHub issue at https://github.com/cisagov/ESXiArgs-Recover/issues; CISA will do our best to resolve concerns.

  1. Quarantine or take affected hosts offline to ensure that repeat infection does not occur.
  2. Download CISA’s recovery script and save it as /tmp/recover.sh.
    For example, with wgetwget -O /tmp/recover.sh https://raw.githubusercontent.com/cisagov/ESXiArgs-Recover/main/recover.sh.
  3. Give the script execute permissions: chmod +x /tmp/recover.sh
  4. Navigate to the folder of a VM you would like to recover and run ls to view the files.
    • Note: You may browse these folders by running ls /vmfs/volumes/datastore1. For instance, if the folder is called example, run cd /vmfs/volumes/datastore1/example.
  5. View files by running ls. Note the name of the VM (via naming convention: [name].vmdk).
  6. Run the recovery script with /tmp/recover.sh [name], where [name] is the name of the VM determined previously. 
    • If the VM is a thin format, run /tmp/recover.sh [name] thin.
    • If successful, the recovery script will output that it has successfully run. If unsuccessful, it may not be possible for the recovery script to recover your VMs; consider engaging external incident response help.
  7. If the script succeeded, re-register the VM.
    1. If the ESXi web interface is inaccessible, remove the ransom note and restore access via the following steps. (Note: Taking the steps below moves the ransom note to the file ransom.html. Consider archiving this file for future incident review.)
      • Run cd /usr/lib/vmware/hostd/docroot/ui/ && mv index.html ransom.html && mv index1.html index.html.
      • Run cd /usr/lib/vmware/hostd/docroot && mv index.html ransom.html && rm index.html && mv index1.html index.html.
      • Reboot the ESXi server (e.g., with the reboot command). After a few minutes, you should be able to navigate to the web interface.
      • In the ESXi web interface, navigate to the Virtual Machines page.
      • If the VM you restored already exists, right click on the VM and select Unregister (see figure 1).
Figure 1: Unregistering the virtual machine

Figure 1: Unregistering the virtual machine.

  • Select Create / Register VM (see figure 2).
  • Select Register an existing virtual machine (see figure 2).
Figure 2: Registering the virtual machine, selecting machine to register.

Figure 2: Registering the virtual machine, selecting machine to register.

Click Select one or more virtual machines, a datastore or a directory to navigate to the folder of the VM you restored. Select the vmx file in the folder (see figure 3).

Figure 3: Registering the virtual machine, finalizing registration.

Figure 3: Registering the virtual machine, finalizing registration.

Select Next and Finish. You should now be able to use the VM as normal.

Figure 3: Registering the virtual machine, finalizing registration.

Select Next and Finish. You should now be able to use the VM as normal.

  1. Update servers to the latest software version, disable the Service Location Protocol (SLP) service, and ensure the ESXi hypervisor is not configured to be exposed to the public internet before putting systems back online. 

Additional Incident Response

The above script only serves as a method to recover essential services. Although CISA and FBI have not seen any evidence that the actors have established persistence, we recommend organizations take the following additional incident response actions after applying the script:

  1. Review network logging to and from ESXi hosts and the guest VMs for unusual scanning activity.
  2. Review traffic from network segments occupied by the ESXi hosts and guests. Consider restricting non-essential traffic to and from these segments.

If you detect activity from the above, implement your incident response plan. CISA and FBI urge you to promptly report ransomware incidents to a local FBI Field Office, or to CISA at cisa.gov/report.

Organizations should also collect and review artifacts, such as running processes/services, unusual authentications, and recent network connections.

See the joint CSA from the cybersecurity authorities of Australia, Canada, New Zealand, the United Kingdom, and the United States on Technical Approaches to Uncovering and Remediating Malicious Activity for additional guidance on hunting or investigating a network, and for common mistakes in incident handling. CISA also encourages government network administrators to see CISA’s Federal Government Cybersecurity Incident and Vulnerability Response Playbooks. Although tailored to federal civilian branch agencies, these playbooks provide operational procedures for planning and conducting cybersecurity incident and vulnerability response activities and detail steps for both incident and vulnerability response.  

Additional resources for recovering .vmdk files can be found on a third-party researcher’s website.[2]

Mitigations

Note: These mitigations align with the cross-sector Cybersecurity Performance Goals (CPGs) developed by CISA and the National Institute of Standards and Technology (NIST). The CPGs provide a minimum set of practices and protections that CISA and NIST recommend all organizations implement. CISA and NIST based the CPGs on existing cybersecurity frameworks and guidance to protect against the most common and impactful threats, tactics, techniques, and procedures. For more information on the CPGs, including additional recommended baseline protections, see cisa.gov/cpg.

CISA and FBI recommend all organizations: 

  • Temporarily remove connectivity for the associated ESXi server(s).
    • Upgrade your ESXi servers to the latest version of VMware ESXi software [CPG 5.1]. ESXi releases are cumulative, and the latest builds are documented in VMware’s article, Build numbers and versions of VMware ESXi/ESX.
    • Harden ESXi hypervisors by disabling the Service Location Protocol (SLP) service, which ESXiArgs may leverage. For more information on executing workarounds, see VMware’s guidance How to Disable/Enable the SLP Service on VMware ESXi
    • Ensure your ESXi hypervisor is not configured to be exposed to the public internet.

In addition, CISA and FBI recommend organizations apply the following recommendations to prepare for, mitigate/prevent, and respond to ransomware incidents.

Preparing for Ransomware

  • Maintain offline backups of data, and regularly test backup and restoration [CPG 7.3]. These practices safeguard an organization’s continuity of operations or at least minimize potential downtime from a ransomware incident and protect against data losses.
  • Ensure all backup data is encrypted, immutable (i.e., cannot be altered or deleted), and covers the entire organization’s data infrastructure.
  • Create, maintain, and exercise a basic cyber incident response plan and associated communications plan that includes response procedures for a ransomware incident [CPG 7.1, 7.2].

 Mitigating and Preventing Ransomware

  • Restrict Server Message Block (SMB) Protocol within the network to only access servers that are necessary and remove or disable outdated versions of SMB (i.e., SMB version 1). Threat actors use SMB to propagate malware across organizations.
  • Require phishing-resistant MFA for as many services as possible [CPG 1.3]—particularly for webmail, VPNs, accounts that access critical systems, and privileged accounts that manage backups.
  • Review the security posture of third-party vendors and those interconnected with your organization. Ensure all connections between third-party vendors and outside software or hardware are monitored and reviewed for suspicious activity.
  • Implement allow-listing policies for applications and remote access that only allow systems to execute known and permitted programs.
  • Open document readers in protected viewing modes to help prevent active content from running.
  • Implement user training program and phishing exercises to raise awareness among users about the risks of visiting suspicious websites, clicking on suspicious links, and opening suspicious attachments. Reinforce the appropriate user response to phishing and spearphishing emails.
  • Use strong passwords [CPG 1.4] and avoid reusing passwords for multiple accounts. See CISA Tip Choosing and Protecting Passwords and the NIST’s Special Publication 800-63B: Digital Identity Guidelines for more information.
  • Require administrator credentials to install software [CPG 1.5].
  • Audit user accounts with administrative or elevated privileges and configure access controls with least privilege in mind [CPG 1.5].
  • Install and regularly update antivirus and antimalware software on all hosts.
  • Consider adding an email banner to messages coming from outside your organizations.
  • Disable hyperlinks in received emails.
  • Consider participating in CISA’s no-cost Automated Indicator Sharing (AIS) program to receive real-time exchange of machine-readable cyber threat indicators and defensive measures. 

Responding to Ransomware Incidents

If a ransomware incident occurs at your organization:

  • Follow your organization’s Ransomware Response Checklist (see Preparing for Ransomware section).
  • Scan backups. If possible, scan backup data with an antivirus program to check that it is free of malware. This should be performed using an isolated, trusted system to avoid exposing backups to potential compromise.
  • Follow the notification requirements as outlined in your cyber incident response plan.
  • Report incidents to CISA at cisa.gov/report, FBI at a local FBI Field Office, or the U.S. Secret Service (USSS) at a USSS Field Office.
  • Apply incident response best practices found in the joint Cybersecurity Advisory, Technical Approaches to Uncovering and Remediating Malicious Activity, developed by CISA and the cybersecurity authorities of Australia, Canada, New Zealand, and the United Kingdom.

Note: CISA and FBI strongly discourage paying ransoms as doing so does not guarantee files and records will be recovered. Furthermore, payment may also embolden adversaries to target additional organizations, encourage other criminal actors to engage in the distribution of ransomware, and/or fund illicit activities.

Resources 

See Stopransomware.gov, a whole-of-government approach, for ransomware resources and alerts.

Acknowledgements

CISA and FBI would like to thank VMware for their contributions to this CSA.

References

Revisions

February, 2023: Initial Version

Source de l’article sur us-cert.gov

Event Sourcing vs Database: What's Next?

Event sourcing and databases have been the go-to solutions for data storage, but what’s the next step? Let’s explore the pros and cons of each and see what the future holds.

## Understanding Event Sourcing and Its Popularity

I am an excited scientist who has made a sensational discovery about event sourcing and its potential to outgrow databases. Event sourcing is a powerful tool that is being adopted by many large organizations as their database architectural design. It has the capability to scale up and serve the needs of the modern data industry.

Event sourcing is a process of storing data in an event log, which is an append-only store. This means that all changes to the data are recorded as a sequence of events. This makes it easier to track changes over time and allows for easy replication of data. Event sourcing also allows for easy scalability, as the data can be replicated across multiple servers.

The popularity of event sourcing is growing rapidly, as it offers many advantages over traditional databases. Event sourcing allows for faster data retrieval, as it stores data in an append-only store. This makes it easier to query and analyze data over time. It also allows for better scalability, as the data can be replicated across multiple servers. Additionally, event sourcing is more secure than traditional databases, as it is append-only and does not allow for any changes to be made to the data.

So, is event sourcing going to outgrow databases? It is hard to say for sure, but the advantages offered by event sourcing make it a strong contender for replacing traditional databases. Event sourcing allows for faster data retrieval, better scalability, and improved security. As more organizations begin to adopt event sourcing, it is likely that it will become the preferred choice for many applications.

Source de l’article sur DZONE

Expérience développeur: les métriques les plus importantes

Découvrez quelles sont les métriques les plus importantes pour un développeur afin d’améliorer son expérience.

## Developer Experience (DevEx or DX)

Le développeur expérience. Si vous fournissez des API ou des produits axés sur les API, vous entendez probablement souvent ce terme. Après tout, vous avez besoin de développeurs pour qu’une API réussisse – et s’ils n’ont pas une excellente expérience, ils passeront à autre chose.

Qu’est-ce que l’expérience du développeur?

L’expérience du développeur (DevEx ou DX) est une extension de l’expérience utilisateur (UX) où l’accent est mis sur les utilisateurs touchés par le côté technique des choses – par exemple, les outils, les langages et les flux de travail. Mais DevEx va bien au-delà de «UX pour les développeurs»: cela signifie s’assurer que les développeurs peuvent facilement comprendre et exploiter une API pour leurs propres applications et cas d’utilisation. Une excellente DevEx se produit lorsque vous communiquez avec vos utilisateurs développeurs, en comprenant et en répondant directement à leurs besoins. Si vous pouvez gagner les développeurs, vous pouvez construire un grand et prospère écosystème autour de vos produits.

Le code est le cœur de l’expérience du développeur. C’est la partie la plus importante de DevEx, car c’est ce qui permet aux développeurs de créer des applications qui exploitent votre API. Les bons outils de codage sont essentiels pour donner aux développeurs une expérience cohérente et agréable. Les outils doivent être faciles à apprendre et à utiliser, et doivent offrir des fonctionnalités intuitives. Les bons outils de codage peuvent aider les développeurs à créer rapidement des applications robustes et fiables qui tirent parti de votre API.

Enfin, une bonne expérience du développeur nécessite une documentation complète et précise. La documentation doit être claire et concise, et doit fournir aux développeurs toutes les informations dont ils ont besoin pour comprendre et utiliser votre API. La documentation doit également inclure des exemples clairs et des tutoriels pour aider les développeurs à comprendre comment votre API fonctionne et à créer rapidement des applications qui en tirent parti. Une bonne documentation peut faire toute la différence entre un développeur qui comprend votre API et un développeur qui abandonne.

En résumé, l’expérience du développeur est essentielle pour le succès d’une API. Pour offrir une expérience exceptionnelle aux développeurs, vous devez mettre l’accent sur le codage, fournir des outils intuitifs et faciles à utiliser, et fournir une documentation complète et précise. Si vous pouvez offrir une expérience exceptionnelle aux développeurs, vous pouvez construire un grand écosystème autour de votre produit et réussir à long terme. En tant que scientifique enthousiaste qui vient de faire une sensationnelle découverte, je suis convaincu que l’expérience du développeur est la clé du succès d’une API.

Source de l’article sur DZONE

empty

Microsoft Azure is a cloud computing platform and infrastructure

Microsoft Azure is a cloud computing platform and infrastructure created by Microsoft for building, deploying, and managing applications and services through a global network of Microsoft-managed data centers. It provides a range of cloud services, including compute, storage, analytics, networking, and identity management. Azure is designed to help organizations of all sizes quickly and cost-effectively develop, deploy, and manage applications and services in the cloud.

Azure offers a wide range of services that can be used to build, deploy, and manage applications and services in the cloud. These include compute, storage, analytics, networking, and identity management. Compute services provide access to virtual machines, containers, and serverless computing resources. Storage services provide access to object storage, file storage, and databases. Analytics services provide access to data analysis tools such as machine learning, data warehousing, and big data processing. Networking services provide access to virtual networks, DNS, load balancing, and traffic management. Identity management services provide access to authentication and authorization services.

Azure also provides a range of tools and services that can be used to manage applications and services in the cloud. These include Azure Resource Manager (ARM), which provides a unified way to deploy, manage, and monitor resources in the cloud; Azure Automation, which provides a way to automate tasks; and Azure Monitor, which provides a way to monitor the performance of applications and services in the cloud. Additionally, Azure provides a range of security features such as encryption, identity management, and access control. These features help ensure that applications and services are secure and compliant with industry standards.

In conclusion, Microsoft Azure is a powerful cloud computing platform and infrastructure that provides a wide range of services for building, deploying, and managing applications and services in the cloud. It offers a range of compute, storage, analytics, networking, and identity management services that can be used to quickly and cost-effectively develop, deploy, and manage applications and services in the cloud. Additionally, it provides a range of tools and services for managing applications and services in the cloud as well as a range of security features for ensuring that applications and services are secure and compliant with industry standards.

Intro to Context

ual Advertising

Contextual advertising is a powerful tool for businesses to reach their target audience with relevant, targeted ads. Learn how it works and its potential to drive sales!

## The Full Context: A Software Project’s Aura

I am an excited scientist who has made a sensational discovery: coding is the key to unlocking The Full Context. By coding, I mean writing code that is both readable and maintainable. It’s not just about writing code that works; it’s about writing code that is easy to understand and modify.

Coding is the foundation of The Full Context. It is the language that allows us to communicate our ideas, our intentions, and our decisions to the software. It is the bridge between the project’s stakeholders and the software itself. Without coding, there would be no way to effectively communicate the project’s requirements to the software.

Coding is also the key to unlocking the potential of The Full Context. By writing code that is both readable and maintainable, we can ensure that the project’s requirements are accurately represented in the software. We can also ensure that future changes and modifications can be made quickly and easily. This allows us to keep up with the ever-changing requirements of the project, while still maintaining a high level of quality.

The Full Context is a powerful tool that can be used to create amazing software projects. But without coding, it would remain just a concept, never fully realized. By coding, we can unlock its potential and create projects that are both powerful and maintainable. This is why coding is so important; it is the key to unlocking The Full Context and creating amazing software projects.

Source de l’article sur DZONE

How to Fill an Empty Space

 How to Fill an Empty Space

Microsoft Azure is a cloud computing platform and infrastructure created by Microsoft for building, deploying, and managing applications and services through a global network of Microsoft-managed data centers. It provides software as a service (SaaS), platform as a service (PaaS) and infrastructure as a service (IaaS) and supports many different programming languages, tools, and frameworks, including both Microsoft-specific and third-party software and systems.

Azure provides a comprehensive set of cloud services that enable organizations to build, deploy, and manage applications across a global network of Microsoft-managed data centers. It offers a wide range of services, including virtual machines, storage, databases, networking, analytics, and more. It also provides tools for developing and managing applications, such as Visual Studio, Azure DevOps, and Azure Machine Learning.

Azure enables organizations to quickly and easily deploy applications and services to the cloud. It provides a secure, reliable, and cost-effective platform for running applications in the cloud. It also provides a range of services for managing and monitoring applications and services, including Azure Monitor, Azure Security Center, and Azure Automation. Additionally, it offers advanced analytics capabilities with Azure Machine Learning and Azure Cognitive Services.

In addition to providing cloud services, Azure also offers a range of tools for developing and managing applications. It provides a range of development tools such as Visual Studio Code, Visual Studio Team Services, and Azure DevOps. It also provides a range of services for managing applications such as Azure Resource Manager, Azure Automation, and Azure Monitor. Additionally, it provides a range of services for monitoring applications such as Azure Application Insights and Azure Security Center.

Azure also provides a range of services for storing data in the cloud. It offers a range of storage services such as Azure Blob Storage, Azure Files, Azure Queue Storage, and Azure Table Storage. It also provides a range of database services such as Azure SQL Database and Azure Cosmos DB. Additionally, it provides a range of services for managing data such as Azure Data Factory and Azure Data Lake.

Overall, Microsoft Azure is an incredibly powerful cloud computing platform that enables organizations to quickly and easily deploy applications and services to the cloud. It provides a secure, reliable, and cost-effective platform for running applications in the cloud. It also provides a range of tools for developing and managing applications as well as services for storing data in the cloud. With its comprehensive set of cloud services and tools, Microsoft Azure is an essential platform for any organization looking to take advantage of the power of the cloud.

Secure Admin Access to Apache APISIX

Secure your APIs with Apache APISIX – the open source, high-performance API gateway that provides secure admin access.

Securing Your Apache APISIX Admin Access

I am an excited scientist who has made a sensational discovery: data security can be improved by protecting your Apache APISIX admin access. This is a critical component of your infrastructure, as it is responsible for routing traffic to the right places. If an attacker were to gain access to this, they could potentially redirect traffic to their own infrastructure, leading to data theft or financial losses.

To ensure the security of your data, it is essential to protect your Apache APISIX admin access. Here are a few ways to do this:

First, you should enable authentication for the admin API. This will require users to enter a username and password before they can access the API. You can also use two-factor authentication for additional security. Additionally, you should limit the IP addresses that are allowed to access the admin API. This will ensure that only trusted IP addresses can access the API and prevent unauthorized access.

Second, you should use TLS encryption for all communication with the admin API. This will ensure that all data is encrypted in transit and protect it from interception. Additionally, you should use a strong cipher suite to ensure that the data is encrypted with a strong algorithm.

Finally, you should monitor all activity on the admin API. This will allow you to detect any suspicious activity and take action quickly. You should also use logging to track all requests and responses to the admin API. This will allow you to review any suspicious activity and take action if necessary.

In conclusion, protecting your Apache APISIX admin access is essential for ensuring the security of your data. By following the steps outlined above, you can ensure that your data is safe and secure. With these measures in place, you can rest assured that your data is protected from unauthorized access and theft.

Source de l’article sur DZONE