Articles

Conception de microservices pour l'IA

La conception de microservices pour l’IA est une tâche complexe qui nécessite une compréhension approfondie des principes de l’intelligence artificielle et des technologies modernes.

2. Event-driven Architecture

The event-driven architecture pattern is based on the concept of an event-driven system, where events are generated by components and handled by other components. In AI microservices, events are triggered by changes in data or model parameters, and the corresponding services are notified to take appropriate actions. This pattern is useful for real-time applications such as autonomous vehicles, where the system must respond quickly to changing conditions.

3. Containerization

Containerization is a key component of AI microservices, allowing for the deployment of multiple services in a single environment. This pattern enables the efficient packaging and deployment of AI models, making it easier to scale and manage them. Additionally, containers provide an isolated environment for each service, ensuring that any changes made to one service do not affect the others.

Conclusion

The integration of AI into microservices architecture is becoming increasingly important in today’s software landscape. The 10 design patterns discussed in this article are essential for developing efficient, robust, and scalable AI solutions. By leveraging these patterns, developers can create powerful AI applications that are modular, scalable, and flexible.

1. Modèle en tant que service (MaaS)

MaaS considère chaque modèle d’intelligence artificielle (IA) comme un service autonome. En exposant les fonctionnalités d’IA via des API REST ou gRPC, MaaS permet un redimensionnement et une mise à jour indépendants des modèles. Ce modèle est particulièrement avantageux pour gérer plusieurs modèles d’IA, permettant une intégration et une déploiement continus sans perturber l’ensemble du système.

2. Architecture orientée événement

Le modèle d’architecture orientée événement est basé sur le concept d’un système orienté événement, où les événements sont générés par des composants et traités par d’autres composants. Dans les microservices d’IA, les événements sont déclenchés par des changements de données ou de paramètres de modèle, et les services correspondants sont notifiés pour prendre les actions appropriées. Ce modèle est utile pour les applications en temps réel telles que les véhicules autonomes, où le système doit réagir rapidement aux conditions changeantes.

3. Conteneurisation

La conteneurisation est un composant clé des microservices d’IA, permettant le déploiement de plusieurs services dans un seul environnement. Ce modèle permet l’empaquetage et le déploiement efficaces des modèles d’IA, facilitant leur mise à l’échelle et leur gestion. De plus, les conteneurs fournissent un environnement isolé pour chaque service, ce qui garantit que tout changement apporté à un service n’affecte pas les autres.

Conclusion

L’intégration de l’IA dans l’architecture des microservices devient de plus en plus importante dans le paysage logiciel actuel. Les 10 modèles de conception discutés dans cet article sont essentiels pour développer des solutions d’IA efficaces, robustes et évolutives. En exploitant ces modèles, les développeurs peuvent créer des applications d’IA puissantes qui sont modulaires, évolutives et flexibles.

Source de l’article sur DZONE

Architecture événementielle avec fonctions sans serveur - Partie 1

Découvrez comment créer une architecture événementielle sans serveur avec des fonctions puissantes et flexibles dans cette première partie !

Première chose, architecture événementielle

When an event occurs, the application can take action. This could be as simple as logging the event or sending an email notification. It could also trigger a more complex workflow, such as a series of tasks to process the order. The key benefit of EDA is that it allows applications to respond quickly to events, without having to wait for a user to initiate an action.

Comment fonctionne l’architecture événementielle

L’architecture événementielle (EDA) est un modèle d’architecture logicielle qui utilise des événements pour découpler les différents composants d’une application. Dans ce contexte, un événement est défini comme un changement d’état. Par exemple, pour une application de commerce électronique, un événement pourrait être un client qui clique sur une liste, ajoute cet article à son panier ou soumet ses informations de carte de crédit pour acheter. Les événements englobent également des changements d’état non initiés par l’utilisateur, tels que des tâches planifiées ou des notifications d’un système de surveillance.

Lorsqu’un événement se produit, l’application peut prendre des mesures. Cela pourrait être aussi simple que de journaliser l’événement ou d’envoyer une notification par e-mail. Il pourrait également déclencher un flux de travail plus complexe, comme une série de tâches pour traiter la commande. L’avantage clé de l’EDA est qu’il permet aux applications de réagir rapidement aux événements, sans avoir à attendre qu’un utilisateur initie une action.

Fonctionnalités sans serveur et codage

Les fonctionnalités sans serveur sont une méthode de déploiement qui permet aux développeurs de créer et de déployer des applications sans avoir à gérer les serveurs sur lesquels elles sont exécutées. Les fonctionnalités sans serveur sont exécutées dans des conteneurs qui sont automatiquement gérés par le fournisseur de services cloud. Les développeurs n’ont donc pas à se soucier de la gestion des serveurs et peuvent se concentrer sur le codage.

Les fonctionnalités sans serveur sont particulièrement utiles pour les applications qui doivent réagir rapidement aux événements. Les conteneurs sont automatiquement déployés et exécutés lorsqu’un événement se produit, ce qui permet à l’application de réagir immédiatement. Les fonctionnalités sans serveur sont également très efficaces car elles ne sont exécutées que lorsque nécessaire et peuvent être redimensionnées en fonction des besoins.

Lorsque les fonctionnalités sans serveur et l’architecture événementielle sont combinées, elles offrent une solution efficace et évolutive pour les applications modernes. Les fonctionnalités sans serveur permettent aux applications de réagir rapidement aux événements et d’être redimensionnées en fonction des besoins, tandis que l’architecture événementielle permet aux applications de réagir aux événements sans attendre qu’un utilisateur initie une action.

Source de l’article sur DZONE

Validation des messages CDC avec Schemaverse (Partie 4)

Dans cette quatrième partie, nous allons apprendre à valider les messages CDC avec Schemaverse, un outil puissant et facile à utiliser pour la validation des données.

## C’est la partie quatre d’une série de billets de blog sur la construction d’un système moderne à événements avec Memphis.dev.

In this blog post, we will focus on how to use the data captured by Debezium in Memphis.dev to build an event-driven system. We will cover topics such as setting up a data pipeline, creating an event-driven workflow, and deploying the system.

Ceci est la quatrième partie d’une série de billets de blog sur la construction d’un système moderne à événements à l’aide de Memphis.dev.

Dans les deux billets de blog précédents (partie 2 et partie 3), nous avons décrit comment mettre en œuvre une pipeline de capture des données de changement (CDC) pour MongoDB à l’aide de Debezium Server et Memphis.dev.

Dans ce billet de blog, nous nous concentrerons sur la façon d’utiliser les données capturées par Debezium dans Memphis.dev pour construire un système à événements. Nous aborderons des sujets tels que la mise en place d’une pipeline de données, la création d’un flux de travail à événements et le déploiement du système.

Pour commencer, nous devons configurer une pipeline de données pour récupérer les données capturées par Debezium et les envoyer à Memphis.dev. Pour ce faire, nous devons configurer un connecteur Kafka qui envoie les données à un canal Kafka, puis configurer un canal Kafka qui envoie les données à un canal Apache Pulsar. Une fois que la pipeline de données est configurée, nous pouvons commencer à créer des flux de travail à événements basés sur ces données.

Ensuite, nous devons créer un flux de travail à événements qui prend en charge le traitement des données capturées par Debezium. Pour ce faire, nous devons créer un modèle de données qui décrit le schéma des données capturées par Debezium et définir des règles pour le traitement des données. Une fois que le modèle et les règles sont définis, nous pouvons créer un flux de travail à événements qui prend en charge le traitement des données capturées par Debezium.

Enfin, nous devons déployer le système à événements que nous avons construit. Pour ce faire, nous devons déployer le connecteur Kafka et le canal Kafka sur un cluster Kafka, puis déployer le canal Apache Pulsar sur un cluster Pulsar. Une fois que tout est déployé, nous pouvons commencer à envoyer des données capturées par Debezium à notre système à événements et à traiter ces données selon les règles que nous avons définies.

En conclusion, nous avons vu comment utiliser les données capturées par Debezium dans Memphis.dev pour construire un système à événements. Nous avons vu comment configurer une pipeline de données pour récupérer les données capt

Source de l’article sur DZONE

Produire et consommer des messages Avro avec Redpanda Schema Registry

Produire et consommer des messages Avro avec Redpanda Schema Registry est une tâche essentielle pour les applications modernes. Découvrez comment le faire facilement!

Si vous êtes familier avec Apache Kafka®, vous avez peut-être rencontré un registre de schémas compatible avec Kafka – un composant distinct que vous déployez en dehors de votre cluster Kafka, car Kafka n’en a pas intégré. 

Essentiellement, un schéma est une description logique de la façon dont vos données sont organisées, et donc un registre de schémas fournit un référentiel central pour ces schémas, permettant aux producteurs et aux consommateurs d’envoyer et de recevoir des données entre eux de manière transparente. Pour les architectures orientées événements, cela peut devenir complexe et difficile à gérer à mesure que vous évoluez, car les schémas de données peuvent changer et évoluer au fil du temps (pouvant potentiellement tout casser plus tard). 

## Utilisation d’un registre de schémas compatible avec Apache Kafka®

L’architecture Apache Kafka® est bien connue et il est possible de rencontrer un registre de schémas compatible avec Kafka, qui est un composant distinct que l’on déploie en dehors du cluster Kafka, car celui-ci n’en comporte pas.

Essentiellement, un schéma est une description logique de la façon dont vos données sont organisées et un registre de schémas fournit donc un référentiel central pour ces schémas, permettant aux producteurs et aux consommateurs d’envoyer et de recevoir des données entre eux sans heurts. Pour les architectures orientées événements, cela peut devenir complexe et difficile à gérer à mesure que l’on se développe, car les schémas de données peuvent changer et évoluer dans le temps (pouvant potentiellement provoquer des dysfonctionnements plus tard).

Un registre de schémas est donc une solution très pratique pour gérer ce type d’architecture. Il permet aux producteurs et aux consommateurs d’accéder facilement aux schémas des données, ce qui leur permet de s’assurer que les données envoyées et reçues sont cohérentes et conformes. De plus, le registre de schémas permet de conserver l’historique des versions des schémas, ce qui peut être très utile pour le débogage et le développement.

Enfin, le registre de schémas peut également être utilisé pour aider à la validation des données. Les producteurs peuvent envoyer des données à un registre de schémas avant de les envoyer à Kafka, ce qui permet de s’assurer que les données sont conformes aux schémas attendus. De même, les consommateurs peuvent également valider les données reçues avant de les traiter, ce qui permet d’assurer la qualité des données et d’améliorer l’efficacité des processus.

En somme, le registre de schémas est un outil très pratique pour gérer les architectures orientées événements. Il permet aux producteurs et aux consommateurs d’accéder facilement aux schémas des données, ce qui leur permet de s’assurer que les données envoyées et reçues sont cohérentes et conformes. De plus, il permet également d’aider à la validation des données, ce qui permet d’améliorer la qualité et l’efficacité des processus.

Source de l’article sur DZONE

This is the second in a series of blogs on data-driven microservices design mechanisms and transaction patterns with the Oracle converged database. The first blog illustrated how to connect to an Oracle database in Java, JavaScript, Python, .NET, and Go as succinctly as possible. The goal of this second blog is to use that connection to receive and send messages with Oracle AQ (Advanced Queueing) queues and topics and conduct an update and read from the database using all of these same languages.

Advanced Queuing (AQ) is a messaging system that is part of every Oracle database edition and was first released in 2002. AQ sharded queues introduced partitioning in release 12c and is now called Transaction Event Queues (TEQ).

Source de l’article sur DZONE