Articles

Apprentissage profond en reconnaissance d'images: Techniques et défis

L’apprentissage profond en reconnaissance d’images est une technologie puissante qui permet de résoudre des problèmes complexes. Découvrez les techniques et les défis associés à cette technologie.

Dans le vaste royaume de l’intelligence artificielle, l’apprentissage profond est devenu un jeu-changer, en particulier dans le domaine de la reconnaissance d’images. La capacité des machines à reconnaître et à catégoriser des images, à la manière du cerveau humain, a ouvert une multitude d’opportunités et de défis. Plongeons-nous dans les techniques que l’apprentissage profond offre pour la reconnaissance d’images et les obstacles qui y sont associés.

Data: For CNNs to work, large amounts of data are required. The more data that is available, the more accurate the results will be. This is because the network needs to be trained on a variety of images, so it can learn to recognize patterns and distinguish between different objects.

Hurdles: The main challenge with CNNs is that they require a lot of data and computing power. This can be expensive and time-consuming, and it can also lead to overfitting if not enough data is available. Additionally, CNNs are not able to generalize well, meaning they are not able to recognize objects that they have not been trained on.

Réseaux de neurones convolutionnels (CNN)

Technique : Les CNN sont le pilier des systèmes de reconnaissance d’images modernes. Ils se composent de plusieurs couches de petites collections de neurones qui traitent des parties de l’image d’entrée, appelées champs réceptifs. Les résultats de ces collections sont ensuite assemblés de manière à se chevaucher, afin d’obtenir une meilleure représentation de l’image d’origine ; c’est une caractéristique distinctive des CNN.

Données : Pour que les CNN fonctionnent, des quantités importantes de données sont nécessaires. Plus il y a de données disponibles, plus les résultats seront précis. C’est parce que le réseau doit être formé sur une variété d’images, afin qu’il puisse apprendre à reconnaître des modèles et à distinguer différents objets.

Hurdles : Le principal défi avec les CNN est qu’ils nécessitent beaucoup de données et de puissance de calcul. Cela peut être coûteux et prendre du temps, et cela peut également entraîner un surajustement si pas assez de données sont disponibles. De plus, les CNN ne sont pas en mesure de généraliser bien, ce qui signifie qu’ils ne sont pas en mesure de reconnaître des objets qu’ils n’ont pas été formés.

Réseaux neuronaux profonds (DNN)

Technique : Les DNN sont une variante des CNN qui peuvent être utilisés pour la reconnaissance d’images. Ils sont constitués de plusieurs couches de neurones qui traitent des parties de l’image d’entrée et produisent des résultats plus précis que les CNN. Les DNN peuvent également être utilisés pour la classification d’images et la segmentation d’images.

Données : Les DNN nécessitent également des grandes quantités de données pour fonctionner correctement. Cependant, ils peuvent être entraînés sur des jeux de données plus petits que les CNN et peuvent donc être plus efficaces lorsqu’il n’y a pas assez de données disponibles.

Hurdles : Le principal défi avec les DNN est qu’ils nécessitent beaucoup de temps et de puissance de calcul pour être entraînés correctement. De plus, ils sont sensibles aux bruit et aux variations dans les données d’entrée, ce qui peut entraîner des résultats imprécis.

Source de l’article sur DZONE

Révolutionner l'IA: Dévoiler le pouvoir de WatsonX

Avec WatsonX, nous pouvons révolutionner l’IA et découvrir de nouvelles possibilités pour le futur.

L’origine de WatsonX

At its core, WatsonX is designed to be a powerful tool for data scientists and developers. It’s capable of ingesting massive amounts of data, analyzing it in real-time, and producing actionable insights that can be used to make better decisions. In addition, WatsonX is designed to be highly scalable, allowing it to handle large volumes of data with ease.

Les origines de WatsonX

Dans le paysage en constante évolution de l’intelligence artificielle, un nouveau joueur est apparu pour redéfinir les limites de ce qui est possible. Entrez WatsonX, une technologie révolutionnaire qui promet de révolutionner le paysage de l’IA. Dans ce blog, nous plongerons profondément dans les intrications de WatsonX, explorerons des exemples captivants et dévoilerons les cas d’utilisation potentiels qui peuvent vraiment le rendre viral.

Derivé de l’iconique Watson AI, qui a célèbrement battu des champions humains dans Jeopardy !, WatsonX représente le point culminant de plusieurs années de recherche, de développement et de progrès. Né de la fusion d’apprentissage machine avancé, de traitement du langage naturel et d’informatique quantique, WatsonX n’est pas seulement une évolution; c’est un bond quantique en avant dans la capacité de l’IA.

Au cœur de WatsonX se trouve un outil puissant conçu pour les scientifiques des données et les développeurs. Il est capable d’ingérer des masses de données, de les analyser en temps réel et de produire des informations exploitables qui peuvent être utilisées pour prendre de meilleures décisions. De plus, WatsonX est conçu pour être hautement extensible, ce qui lui permet de gérer facilement de grandes volumes de données.

Source de l’article sur DZONE

API en mouvement : maintenez vos APIs à jour

Les API sont en mouvement constant et il est essentiel de les maintenir à jour pour assurer le bon fonctionnement de votre application. Découvrez comment!

Dans le monde en constante évolution de la technologie, les applications logicielles sont devenues le pilier de la société moderne.

L’importance des APIs dans l’architecture logicielle moderne

Dans le monde en constante évolution de la technologie, les applications logicielles sont devenues le pilier de la société moderne. Des applications mobiles qui simplifient nos tâches quotidiennes aux plates-formes web qui nous connectent à l’échelle mondiale, ces applications dépendent d’une communication et d’un échange de données sans faille. C’est là que les interfaces de programmation d’application (API) entrent en jeu. Les APIs sont devenues le pilier du développement logiciel moderne, révolutionnant la façon dont les applications sont conçues, construites et intégrées. Leur importance provient de leur capacité à faciliter la communication et l’échange de données entre diverses applications et services. Au cœur de l’API, ou interface de programmation d’application, se trouve un ensemble de règles, de protocoles et d’outils qui permettent à différentes applications logicielles de communiquer et d’interagir entre elles. Les APIs agissent comme des ponts, permettant à une application d’accéder et d’utiliser les services et fonctionnalités fournis par une autre application ou plate-forme. Cette interopérabilité permet aux développeurs de combiner les forces de diverses applications et de créer des solutions intégrées puissantes.

Mise à jour et évolution des APIs au fil du temps

Les APIs sont essentielles pour maintenir l’architecture logicielle à jour et en bon état de fonctionnement. Les mises à jour et les modifications apportées aux APIs sont nécessaires pour s’assurer que les applications peuvent continuer à communiquer et à échanger des données sans problème. Les mises à jour peuvent être apportées pour corriger des bogues, ajouter des fonctionnalités supplémentaires ou améliorer la sécurité. De plus, les mises à jour peuvent être apportées pour s’adapter aux changements technologiques et aux nouvelles exigences des utilisateurs. Les mises à jour peuvent également être apportées pour s’adapter aux nouvelles normes et technologies, ce qui permet aux applications de rester compétitives. Les mises à jour des APIs sont donc essentielles pour maintenir l’architecture logicielle à jour et en bon état de fonctionnement.

Conclusion

Les APIs sont essentielles pour faciliter la communication et l’échange de données entre diverses applications et services. Elles sont également essentielles pour maintenir l’architecture logicielle à jour et en bon état de fonctionnement. Les mises à jour et les modifications apportées aux APIs sont nécessaires pour s’assurer que les applications peuvent continuer à communiquer et à échanger des données sans problème. Les mises à jour peuvent être apportées pour corriger des bogues, ajouter des fonctionnalités supplémentaires ou améliorer la sécurité. De plus, les mises à jour peuvent être apportées pour s’adapter aux changements technologiques et aux nouvelles exigences des utilisateurs. Les mises à jour des APIs sont donc essentielles pour maintenir l’architecture logicielle à jour et en bon état de fonctionnement.

L’importance des APIs dans l’architecture

Source de l’article sur DZONE

Expliquer l'IIoT : exemples, technologies, avantages et défis.

L’IIoT (Internet des Objets Industriel) est un domaine en pleine expansion qui combine les technologies de l’information et de la communication pour améliorer l’efficacité et la productivité des processus industriels. Découvrez les exemples, technologies, avantages et défis de l’IIoT.

Qu’est-ce que l’Internet industriel des objets (IIoT) ?

IIoT technology is being used in a variety of industrial settings, from manufacturing to energy production. It’s enabling the development of smart factories, where machines are connected to the internet and can communicate with each other. This allows for greater automation, improved efficiency, and increased productivity. Additionally, IIoT technology is being used in predictive maintenance, where sensors monitor machinery and alert operators when maintenance is needed. This reduces downtime and improves safety.

Qu’est-ce que l’Internet Industriel des Objets (IIoT) ?

L’Internet Industriel des Objets (IIoT), ou IIoT, est un terme utilisé pour décrire l’application de la technologie de l’Internet des Objets (IoT) dans des environnements industriels. Il englobe l’intégration de capteurs avancés, de logiciels et de machines avec une connectivité Internet pour collecter, analyser et agir sur d’immenses quantités de données. Cette approche basée sur les données permet de prendre des décisions en temps réel et d’utiliser l’analyse prédictive, ce qui conduit à une efficacité opérationnelle améliorée, des coûts réduits et une qualité de produit améliorée.

L’IIoT est un composant clé de l’Industrie 4.0, la quatrième révolution industrielle, caractérisée par la fusion des technologies numériques, physiques et biologiques. Il révolutionne les industries traditionnelles, facilitant la transformation des processus manuels et intensifs en main-d’œuvre en opérations automatisées et basées sur les données.

La technologie IIoT est utilisée dans une variété de contextes industriels, allant de la fabrication à la production d’énergie. Elle permet le développement de usines intelligentes, où les machines sont connectées à Internet et peuvent communiquer entre elles. Cela permet une plus grande automatisation, une efficacité accrue et une productivité accrue. De plus, la technologie IIoT est utilisée dans la maintenance prédictive, où des capteurs surveillent les machines et alertent les opérateurs lorsqu’une maintenance est nécessaire. Cela réduit les temps d’arrêt et améliore la sécurité.

Source de l’article sur DZONE

Guide simple à l'ingénierie inverse de l'algorithme Twitter avec LangChain, Activeloop et DeepInfra

Découvrez comment utiliser LangChain, Activeloop et DeepInfra pour effectuer une ingénierie inverse de l’algorithme Twitter facilement et rapidement !

## Imaginez écrire un logiciel qui puisse comprendre, assister et même générer du code, comme le ferait un développeur expérimenté.

LangChain is a data-driven platform that enables developers to create, modify, and debug code faster and more efficiently. It works by analyzing code and extracting meaningful information from it. This data is then used to build models that can understand and generate code. The models are then used to generate code that is tailored to the user’s needs.

LangChain est une plateforme basée sur les données qui permet aux développeurs de créer, modifier et déboguer le code plus rapidement et plus efficacement. Il fonctionne en analysant le code et en extrayant des informations significatives de celui-ci. Ces données sont ensuite utilisées pour créer des modèles qui peuvent comprendre et générer du code. Les modèles sont ensuite utilisés pour générer du code adapté aux besoins de l’utilisateur.

LangChain nous permet d’atteindre un nouveau niveau de compréhension et de génération de code grâce à des modèles avancés tels que VectorStores, Conversational RetrieverChain et LLMs. Avec LangChain, il est possible d’imaginer un logiciel capable de comprendre, d’assister et même de générer du code, comme un développeur expérimenté le ferait. Grâce à cette technologie, les développeurs peuvent gagner du temps et de l’argent en réduisant le temps nécessaire pour créer, modifier et déboguer le code.

LangChain est un outil très puissant qui peut être utilisé par les développeurs pour améliorer leurs compétences et leur productivité. Il permet aux développeurs de comprendre le code plus rapidement et de le modifier plus facilement. En outre, il peut être utilisé pour générer du code à partir de données existantes ou pour créer des modèles qui peuvent être utilisés pour générer du code à partir de données nouvelles ou existantes. Enfin, LangChain peut être utilisé pour trouver des erreurs dans le code et les corriger rapidement.

Source de l’article sur DZONE

Stratégie de données en évolution à grande banque canadienne

La grande banque canadienne s’est engagée à mettre en œuvre une stratégie de données en évolution pour offrir une expérience client plus personnalisée et plus intuitive.

## Avec la quantité et la variété croissantes de données, les exigences réglementaires et législatives en constante évolution, de nouvelles capacités et techniques pour traiter les données, pour devenir une organisation axée sur les données, la CIBC traverse d’énormes changements dans tous les aspects de l’utilisation, de la gestion et de la gouvernance des données.

Avec la quantité et la variété croissantes de données, les exigences réglementaires et législatives en constante augmentation, de nouvelles capacités et techniques pour traiter les données, pour devenir une organisation axée sur les données, la CIBC traverse d’énormes changements dans tous les aspects de l’utilisation, de la gestion et de la gouvernance des données.

Pour répondre aux exigences de cette nouvelle réalité, la CIBC a embrassé le paradigme du maillage de données et a développé un motif de données générique à deux parties. Du côté des affaires, le motif a introduit une stratégie de produits de données pour définir les domaines de données et les produits de données de bout en bout détenus par les équipes de produits de données inter fonctionnelles. Du côté de la technologie, la CIBC a mis en œuvre une architecture de maillage de données pour soutenir la stratégie de produits de données. La partie centrale de cette architecture est représentée par une plateforme de gestion des données fournissant une plateforme partagée et des services de gestion et de gouvernance des données. Cet article présente et discute les principes directeurs qui sous-tendent la stratégie des données.

La plateforme de gestion des données est le cœur du maillage des données et fournit une base commune pour la gestion et la gouvernance des données. La plateforme est basée sur une base de données centralisée qui stocke toutes les données pertinentes pour le maillage des données. La plateforme offre également des services d’intégration, d’analyse, d’intelligence artificielle et d’apprentissage automatique qui peuvent être utilisés par les produits de données pour fournir des informations exploitables. La plateforme fournit également des services pour garantir que toutes les données sont sûres, conformes et accessibles aux personnes autorisées.

La plateforme de gestion des données est conçue pour s’adapter aux exigences changeantes en matière de gestion des données. La plateforme peut être étendue pour prendre en charge des technologies supplémentaires telles que le traitement en temps réel, l’analyse avancée et l’apprentissage automatique. La plateforme peut également être intégrée à des systèmes tiers pour fournir une vue intégrée des données. Enfin, la plateforme peut être étendue pour prendre en charge des fonctionnalités supplémentaires telles que la gouvernance des données, la protection des données et l’audit.

Source de l’article sur DZONE

Programmation efficace avec observabilité Java

La programmation efficace et l’observabilité Java sont des outils essentiels pour développer des applications modernes. Découvrez comment les mettre en pratique!

Les erreurs courantes que j’ai vues répétées au fil des ans lors de la mise en œuvre de initiatives d’observabilité ne sont pas rares. Cependant, la plus critique et fondamentale de ces erreurs organisationnelles est l’irrésistible infatuation avec la technologie et les outils eux-mêmes.

The answer is simple: observability is not about the tools, it’s about the architecture. It’s about the ability to instrument your code and make it observable, and to have the right data available at the right time. It’s about having the right data and the right tools to make sense of it. It’s about understanding what data is important and what data is not. It’s about understanding the context of the data and how it relates to other data. It’s about understanding how to use the data to make better decisions.

Il y a beaucoup d’erreurs courantes que j’ai vues répétées au fil des ans lors de la mise en œuvre de initiatives d’observabilité. Cependant, le plus critique et le plus fondamental de ces erreurs organisationnelles est l’irrésistible fascination pour la technologie et les outils eux-mêmes.

Cela ne devrait pas être une surprise. De nombreux projets «ajoutons la plateforme d’observabilité X» démarrent avec beaucoup de faste mais aussi un sens de direction très flou et des critères de réussite extrêmement confus. La vision de ce que l’observabilité efficace peut faire pour aider réellement les développeurs à travailler mieux est suspectée d’être absente des prêches de nombreux fournisseurs commerciaux et oracles. Demandez-vous : à quelle fréquence vous trouvez-vous en train de quitter le code dans l’IDE pour voir ce que vous pouvez apprendre de ses données d’exécution?

La réponse est simple : l’observabilité ne concerne pas les outils, mais l’architecture. Il s’agit de la capacité d’instrumenter votre code et de le rendre observable, et d’avoir les bonnes données disponibles au bon moment. Il s’agit d’avoir les bonnes données et les bons outils pour en tirer des conclusions. Il s’agit de comprendre quelles données sont importantes et quelles données ne le sont pas. Il s’agit de comprendre le contexte des données et comment elles se rapportent à d’autres données. Il s’agit de comprendre comment utiliser les données pour prendre de meilleures décisions.

Lorsque vous concevez une architecture d’observabilité, vous devez prendre en compte tous ces aspects. Vous devez comprendre comment les données sont collectées, comment elles sont stockées, comment elles sont analysées et comment elles sont utilisées pour prendre des décisions. Vous devez également comprendre comment les outils peuvent vous aider à atteindre ces objectifs. Une architecture d’observabilité réussie doit être conçue pour fournir une vue complète des performances et des problèmes logiciels, ainsi que des informations sur la façon dont le code est exécuté.

Une fois que vous avez une architecture solide en place, vous pouvez alors commencer à choisir les outils appropriés pour collecter, stocker et analyser les données. Vous pouvez également choisir des outils pour vous aider à prendre des décisions informées sur la façon dont votre code est exécuté. Enfin, une fois que vous avez mis en place une architecture solide et choisi les bons outils, vous pouvez commencer à tirer parti des avantages de l’observabilité.

Source de l’article sur DZONE

Architecture d'observabilité: Exemple de calculs financiers

L’architecture d’observabilité permet de calculer des données financières avec précision et efficacité. Découvrez un exemple de calculs financiers à travers cet article.

Technologies Cloud-Native : Comment les services de paiement sont-ils architecturés ? En 2020, j’ai présenté une série avec des insights issus de mises en œuvre réelles adoptant des technologies open-source et cloud-native pour moderniser les services de paiement. Les architectures présentées étaient basées sur des technologies cloud-native open-source, telles que des conteneurs, des microservices et une plateforme de conteneurs basée sur Kubernetes. La principale omission dans cette série était d’éviter de discuter de tout aspect de l’observabilité cloud-native. Cette série examinera comment corriger cette omission avec une plateforme d’observabilité cloud-native open-source basée sur des normes qui aide les équipes DevOps à contrôler la vitesse, l’échelle et la complexité d’un monde cloud-native pour leur architecture de paiements financiers.

La technologie cloud-native a changé la façon dont les services de paiement sont architecturés. En 2020, j’ai présenté une série d’informations issues de mises en œuvre réelles adoptant la technologie open-source et cloud-native pour moderniser les services de paiement.

Les architectures présentées étaient basées sur des technologies cloud-native open-source, telles que des conteneurs, des microservices et une plateforme de conteneurs basée sur Kubernetes. La principale omission dans cette série était d’éviter tout aspect de l’observabilité cloud-native. Cette série examinera comment corriger cette omission avec une plateforme d’observabilité cloud-native open-source basée sur des normes qui aide les équipes DevOps à contrôler la vitesse, l’échelle et la complexité d’un monde cloud-native pour leur architecture de paiement financier.

Les données sont le moteur de l’observabilité cloud-native. Les données peuvent être collectées à partir de sources telles que les journaux, les métriques et les traces. Ces données peuvent être utilisées pour comprendre le comportement des applications et des services, identifier les problèmes et prendre des décisions informées. Une plateforme d’observabilité cloud-native open-source peut fournir des outils pour collecter, stocker, analyser et visualiser ces données.

L’utilisation d’une plateforme d’observabilité cloud-native open-source peut aider les équipes DevOps à gérer la vitesse, l’échelle et la complexité de leur architecture de paiement financier. Les outils de cette plateforme peuvent être utilisés pour surveiller les performances des applications et des services, déboguer les problèmes et comprendre le comportement des utilisateurs. Les données collectées peuvent également être utilisées pour optimiser les performances et améliorer la qualité du service. Enfin, cette plateforme peut être utilisée pour alimenter des applications d’intelligence artificielle et d’apprentissage automatique afin d’améliorer encore plus le service.

En conclusion, l’utilisation d’une plateforme d’observabilité cloud-native open-source peut aider les équipes DevOps à gérer la vitesse, l’échelle et la complexité de leur architecture de paiement financier. Les outils de cette plateforme peuvent être utilisés pour collecter, stocker, analyser et visualiser des données afin de surveiller les performances des applications et des services, déboguer les problèmes et comprendre le comportement des utilisateurs. Les données collectées peuvent également être utilisées pour optimiser les performances et améliorer la qualité du service. Enfin, cette plateforme peut être utilisée pour alimenter des applications d’intelligence artificielle et d’apprentissage automatique afin d’améliorer encore plus le service.

Source de l’article sur DZONE

Créer une application RESTful avec Quarkus et Eclipse JNoSQL alimentée par MongoDB

Créer une application RESTful moderne et performante avec Quarkus et Eclipse JNoSQL alimentée par MongoDB, c’est possible ! Découvrez comment dans ce tutoriel.

Intégration Facile des Bases de Données NoSQL avec Eclipse JNoSQL et Quarkus

Quarkus est une plate-forme Java open source qui offre une excellente performance et une faible empreinte mémoire. Il est conçu pour être très rapide à démarrer et à s’exécuter, ce qui en fait un excellent choix pour les applications cloud et mobiles. Quarkus est également très intégré avec Eclipse JNoSQL, ce qui permet aux développeurs de bénéficier des avantages des bases de données NoSQL sans avoir à se soucier des configurations complexes.

L’utilisation conjointe de Eclipse JNoSQL et Quarkus est un excellent moyen de simplifier le développement d’applications modernes qui utilisent des bases de données NoSQL. Les développeurs peuvent facilement intégrer des bases de données NoSQL dans leurs applications grâce à l’API standardisée fournie par Eclipse JNoSQL, tout en bénéficiant des performances et de la faible empreinte mémoire offertes par Quarkus. De plus, le framework offre un environnement de test intégré qui permet aux développeurs de tester leurs applications avec différentes bases de données NoSQL sans avoir à effectuer des configurations complexes. Enfin, Eclipse JNoSQL et Quarkus sont entièrement open source et gratuits, ce qui en fait une solution très abordable pour les développeurs.

Dans l’environnement en constante évolution du développement d’applications modernes, l’adoption des bases de données NoSQL a connu une croissance significative en raison de leurs modèles de données flexibles et de leurs avantages en matière d’évolutivité. Cependant, l’intégration transparente des bases de données NoSQL dans une application peut parfois être complexe et nécessiter des connaissances spécialisées et des configurations complexes. C’est là que Eclipse JNoSQL et Quarkus entrent en jeu, deux technologies puissantes qui, lorsqu’elles sont combinées, simplifient le processus d’intégration et permettent aux développeurs d’exploiter facilement les fonctionnalités des bases de données NoSQL. Eclipse JNoSQL est un framework open source qui fournit une API standardisée et des outils pour travailler avec des bases de données NoSQL. Il offre un modèle de programmation unifié qui masque les complexités des différentes bases de données NoSQL, permettant aux développeurs d’écrire du code indépendant de la technologie sous-jacente. JNoSQL prend en charge une large gamme de bases de données NoSQL, notamment MongoDB, Cassandra, Couchbase et plus encore, ce qui en fait un excellent choix pour la construction d’applications flexibles et évolutives.

Quarkus est une plate-forme Java open source qui offre une excellente performance et une faible empreinte mémoire. Il est conçu pour être très rapide à démarrer et à s’exécuter, ce qui en fait un excellent choix pour les applications cloud et mobiles. Quarkus est également très intégré avec Eclipse JNoSQL, ce qui permet aux développeurs de bénéficier des avantages des bases de données NoSQL sans avoir à se soucier des configurations complexes. De plus, Quarkus propose un environnement de test intuitif qui permet aux développeurs de tester leurs applications avec différentes bases de données NoSQL sans avoir à effectuer des configurations complexes.

L’utilisation conjointe de Eclipse JNoSQL et Quarkus est un excellent moyen de simplifier le développement d

Source de l’article sur DZONE

Auto-apprentissage en informatique

L’auto-apprentissage en informatique est une technologie révolutionnaire qui permet aux machines d’apprendre et de s’améliorer sans intervention humaine.

« Les informaticiens autodidactes et les filières informatique »

L’informatique est un domaine en pleine croissance et de plus en plus de personnes sont attirées par cette discipline. Les informaticiens autodidactes sont de plus en plus nombreux et leur présence est de plus en plus visible. JobSkills.center a récemment publié un sondage sur Linkedin pour évaluer l’adéquation du métier d’informaticien avec une formation autodidacte.

Les informaticiens autodidactes sont ceux qui ont appris à coder par eux-mêmes, sans suivre de formation formelle, et qui ont acquis des compétences et des connaissances dans le domaine de l’informatique. Ces personnes ont souvent été motivées par une passion pour l’informatique et ont décidé de se former par elles-mêmes. Les langages et bases de données open-source téléchargeables et gratuits ont contribué à faciliter cette démarche.

Pour se former en informatique, il faut commencer par acquérir l’outillage nécessaire à l’exercice de son activité. Les concepts du développement peuvent nécessiter des licences de compilateur ou de SGBD, tandis que l’infrastructure peut nécessiter des serveurs, des switches, des câbles, des baies et des licences logicielles. Les informaticiens autodidactes doivent également apprendre les processus métier et organisationnels pour exercer leur activité.

L’un des principaux défis auxquels sont confrontés les informaticiens autodidactes est la validation des acquis. Les profils qui ont la chance d’être intégrés à une équipe projet peuvent confronter leurs connaissances avec celles des autres membres et démontrer leur expérience à l’issue de la mission. Pour les profils en recherche d’un emploi ou d’une mission, passer des certifications est un moyen de démontrer leur compréhension des concepts et de la logique des techniques. Heureusement, il existe de nombreuses certifications disponibles que chacun peut passer individuellement dans un centre Person Vue ou Prometric.

Il existe également plusieurs moyens pour se former à l’informatique, notamment rejoindre une session en centre de formation, suivre des sessions MOOC payantes ou gratuites ou encore acquérir des ouvrages pédagogiques. Une fois formés, les informaticiens autodidactes doivent trouver du travail ou des missions. Les critères prédominants du recrutement en France sont le cursus d’étude suivi, les certifications disponibles, l’expérience acquise et les références disponibles. Se former en complément à l’anglais peut être une solution pour les autodidactes qui veulent se donner les meilleures chances de réussir leur recherche d’emploi.

En conclusion, apprendre à coder par soi-même est tout à fait possible et il existe de nombreuses possibilités pour se former à l’informatique. Les informaticiens autodidactes doivent cependant trouver des moyens pour valider leurs acquis et démontrer leur niveau aux potentiels employeurs. Se former en complément à l’anglais peut être une bonne solution pour les autodidactes qui veulent se donner les meilleures chances de décrocher le graal.

Source de l’article