Comparing bfloat16 Range and Precision to Other 16-bit Numbers

Deep Learning has spurred interest in novel floating point formats. Algorithms often don’t need as much precision as standard IEEE-754 doubles or even single precision floats. Lower precision makes it possible to hold more numbers in memory, reducing the time spent swapping numbers in and out of memory. Since this where a lot of time goes, low precision formats can speed things up quite a bit.

Here I want to look at bfloat16, or BF16 for short, and compare it to 16-bit number formats I’ve written about previously, IEEE and posit.

Source de l’article sur DZONE (AI)

0 réponses

Laisser un commentaire

Participez-vous à la discussion?
N'hésitez pas à contribuer!

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée.