Articles

Le data mining est le processus d’extraction d’informations utiles à partir d’une accumulation de données, souvent à partir d’un data warehouse (entrepôt de données) ou d’une collection d’ensembles de données liés. Les outils de data mining incluent de puissantes fonctionnalités statistiques, mathématiques et analytiques dont l’objectif principal est de passer au crible de vastes ensembles de données pour identifier les tendances, les modèles et les relations, pour des prises de décisions et une planification éclairées.

Souvent associé aux demandes du service marketing, le data mining est considéré par de nombreux dirigeants comme un moyen de mieux comprendre la demande et de voir l’impact des modifications apportées aux produits, des prix ou des promotions sur les ventes. Mais le data mining présente également des avantages considérables pour d’autres domaines d’activité. Les ingénieurs et les concepteurs peuvent analyser l’efficacité des modifications de produit et rechercher les causes possibles de la réussite ou de l’échec d’un produit en fonction de la manière, du moment et du lieu d’utilisation des produits. Le MRO (entretien, réparation et fonctionnement) est en mesure de mieux planifier le stock de pièces et l’affectation du personnel. Les entreprises de services professionnels peuvent utiliser le data mining pour identifier les nouvelles opportunités liées à l’évolution des tendances économiques et aux changements démographiques.

Le data mining s’avère davantage utile et précieux maintenant que l’on se retrouve avec des ensembles de données plus volumineux et une expérience utilisateur accrue. Logiquement, plus il y a de données, plus elles cachent d’informations et de renseignements. Par ailleurs, plus les utilisateurs se familiarisent avec les outils et comprennent la base de données, plus ils deviennent créatifs vis-à-vis des explorations et des analyses.


Pourquoi utiliser le data mining ?

Le principal avantage du data mining est sa capacité à repérer des modèles et des relations dans de grands volumes de données provenant de plusieurs sources. Avec de plus en plus de données disponibles, provenant de sources aussi variées que les réseaux sociaux, les capteurs à distance et les rapports de plus en plus détaillés sur les mouvements de produits et l’activité du marché, le data mining offre les outils nécessaires pour exploiter pleinement le Big Data et le transformer en renseignements exploitables. De plus, il peut aider à « sortir des sentiers battus ».

Le processus de data mining peut détecter des relations et des modèles surprenants et intrigants dans des fragments d’informations apparemment non liées. Comme les informations tendent à être compartimentées, il a toujours été difficile, voire impossible, de les analyser dans leur ensemble. Toutefois, il peut exister une relation entre les facteurs externes (démographiques ou économiques, par exemple) et la performance des produits d’une entreprise. Les dirigeants, qui examinent régulièrement les chiffres des ventes par territoire, ligne de produits, canal de distribution et région, manquent souvent de contexte externe pour ces informations. Leur analyse souligne « ce qui s’est passé », mais ne détaille pas vraiment « pourquoi cela s’est passé de cette manière ». Le data mining peut apporter une solution.

Le data mining peut rechercher des corrélations avec des facteurs externes. Si la corrélation n’indique pas toujours la causalité, ces tendances peuvent être des indicateurs précieux pour guider les décisions relatives aux produits, aux canaux et à la production. La même analyse peut être bénéfique pour d’autres domaines de l’activité, de la conception de produit à l’efficacité opérationnelle, en passant par la prestation de services.


Historique du data mining

Nous collectons et analysons des données depuis des milliers d’années et, à bien des égards, le processus est resté le même : identifier les informations nécessaires, trouver des sources de données de qualité, collecter et combiner les données, utiliser les outils les plus efficaces pour analyser les données, et tirer parti des enseignements appris. À mesure que l’informatique et les systèmes basés sur les données se sont développés, il en a été de même pour les outils de gestion et d’analyse des données. Le véritable point d’inflexion est venu dans les années 1960 avec le développement de la technologie de base de données relationnelle et des outils de requête en langage naturel orienté utilisateur, tels que Structured Query Language (SQL). Les données n’étaient plus disponibles uniquement via des programmes codés personnalisés. Grâce à cette avancée, les utilisateurs pouvaient explorer leurs données de manière interactive et en extraire les « joyaux cachés ».

Le data mining est traditionnellement un ensemble de compétences spécialisées dans la science des données. Cependant, chaque nouvelle génération d’outils analytiques nécessite dans un premier temps des compétences techniques avancées, mais évolue rapidement pour devenir accessible aux utilisateurs. L’interactivité, c’est-à-dire la possibilité de laisser les données vous parler, est la principale avancée. Posez une question et visualisez la réponse. En fonction de ce que vous apprenez, posez une autre question. Ce type d’itinérance non structurée à travers les données permet à l’utilisateur d’aller au-delà des limites de la conception de bases de données spécifiques à une application et permet de découvrir des relations qui dépassent les limites fonctionnelles et organisationnelles.

Le data mining est une composante clé de la Business Intelligence. Les outils d’exploration de données sont créés dans les tableaux de bord décisionnels, en extrayant des informations du Big Data, y compris les données des réseaux sociaux, des flux de capteurs IoT, des appareils de localisation, du texte non structuré, des vidéos, etc. Le data mining moderne s’appuie sur le Cloud, l’informatique virtuel et les bases de données in-memory pour gérer les données de diverses sources de manière rentable et s’adapter à la demande.


Comment cela fonctionne ?

Il y a environ autant d’approches du data mining qu’il y a d’explorateurs de données. L’approche dépend du type de questions posées, du contenu et de l’organisation de la base de données ou des ensembles de données fournissant la matière première pour la recherche et l’analyse. Cela dit, certaines étapes organisationnelles et préparatoires doivent être accomplies pour préparer les données, les outils et les utilisateurs :

  1. Comprendre le problème, ou du moins le domaine d’enquête.Le décideur, qui doit prendre les commandes de cette grande aventure de data mining, a besoin d’une compréhension générale du domaine dans lequel il travaillera, à savoir les types de données internes et externes qui doivent faire partie de cette exploration. On suppose qu’il a une connaissance approfondie de l’entreprise et des domaines fonctionnels impliqués.
  2. Collecte de données. Commencez par vos systèmes et bases de données internes. Liez-les à l’aide de leurs modèles de données et de divers outils relationnels, ou rassemblez les données dans un entrepôt de données (data warehouse). Cela inclut toutes les données provenant de sources externes qui font partie de vos opérations, telles que les données de force de vente et/ou de service, les données IoT ou des réseaux sociaux. Recherchez et acquérez auprès des associations professionnelles et des gouvernements les droits sur les données externes, notamment les données démographiques, économiques et relatives au marché, telles que les tendances du secteur et les indices financiers. Intégrez-les dans le périmètre du kit d’outils (intégrez-les dans votre data warehouse ou reliez-les à l’environnement de data mining).
  3. Préparation et compréhension des données.Faites appel aux experts en la matière pour définir, catégoriser et organiser les données. Cette partie du processus est parfois appelée « remaniement des données ». Certaines données peuvent nécessiter un nettoyage pour supprimer les doublons, les incohérences, les enregistrements incomplets ou les formats obsolètes. La préparation et le nettoyage des données peuvent se poursuivre à mesure que de nouveaux projets ou des données provenant de nouveaux champs d’enquête deviennent intéressants.
  4. Formation des utilisateurs.Vous ne donneriez pas à votre adolescent les clés de la Ferrari sans qu’il n’ait appris à conduire ou qu’il n’ait pratiqué la conduite sur route avec un moniteur. Par conséquent, veillez à dispenser une formation formelle à vos futurs explorateurs de données et à les familiariser avec ces outils puissants. La formation continue est également bienvenue une fois qu’ils maîtrisent les bases et qu’ils peuvent passer à des techniques plus avancées.

Techniques de data mining

Gardez à l’esprit que l’exploration de données est basée sur un kit d’outils plutôt que sur une routine ou un processus fixe. Les techniques spécifiques de data mining citées ici ne sont que des exemples d’utilisation des outils par les organisations afin d’explorer leurs données et rechercher des tendances, des corrélations et des renseignements.

D’une manière générale, les approches de data mining peuvent être catégorisées comme étant orientées (vers un résultat spécifique souhaité) ou non orientées, comme un simple processus de découverte. D’autres explorations peuvent être destinées au tri ou à la classification des données, telles que le regroupement des clients potentiels en fonction d’attributs commerciaux comme le secteur, les produits, la taille et le lieu géographique. De même, la détection de cas particuliers ou d’anomalies est une méthode automatisée de reconnaissance des anomalies réelles (plutôt que simple variabilité) dans un ensemble de données qui affiche des modèles identifiables.

Association

Un autre objectif intéressant est l’association, qui relie deux événements ou activités apparemment non liés. Il existe un récit bien connu des débuts de l’analyse et du data mining, peut-être fictif, selon lequel une chaîne de magasins découvrait une corrélation entre les ventes de bière et de couches. Il avait été supposé que les nouveaux papas stressés qui sortaient tard le soir pour acheter des couches pouvaient aussi prendre un pack de 6 bières dans la foulée. Les magasins ont alors placé la bière et les couches à proximité, ce qui a augmenté les ventes de bière.

Clustering

Cette approche vise à regrouper les données par similitudes plutôt que par hypothèses prédéfinies. Par exemple, lorsque vous explorez vos informations commerciales clients combinées à des données externes démographiques et de crédit à la consommation, vous pourriez découvrir que vos clients les plus rentables vivent dans des villes de taille moyenne.

La majorité du temps, le data mining est exécuté en soutien à la prévision. Plus vous comprenez les modèles et les comportements, mieux vous pouvez prévoir les actions futures liées aux causes ou aux corrélations.

Régression

L’une des techniques mathématiques proposées dans les kits d’outils de data mining est l’analyse de régression, qui prédit un nombre en fonction de modèles historiques projetés dans le futur. Divers autres algorithmes de détection et de suivi des modèles fournissent des outils flexibles pour aider les utilisateurs à mieux comprendre les données et le comportement qu’elles représentent.

Ce ne sont là que quelques-uns des outils et des techniques disponibles dans les kits d’outils de data mining. Le choix de l’outil ou de la technique est en quelque sorte automatisé en ce sens que les techniques seront appliquées en fonction de la manière dont la question est posée. Auparavant, l’exploration de données revenait à « découper en tranches » la base de données, mais la pratique est aujourd’hui plus sophistiquée et les termes comme association, clustering et régression sont monnaie courante.


Exemples de cas d’utilisation

Le data mining est essentiel à l’analyse des sentiments, à l’optimisation des prix, au marketing de bases de données, à la gestion des risques de crédit, à la formation et à l’assistance, à la détection des fraudes, aux diagnostics médicaux, à l’évaluation des risques, aux systèmes de recommandation (à savoir, « les clients qui ont acheté ceci ont également aimé… »), et bien plus encore. Elle peut être un outil efficace dans pratiquement n’importe quel secteur, y compris la distribution de détail, la distribution de gros, les services, la fabrication, les télécommunications, les communications, les assurances, l’éducation, la santé, la banque, la science, l’ingénierie et le marketing en ligne ou les réseaux sociaux.

Développement de produit

Les entreprises qui conçoivent, fabriquent ou distribuent des produits physiques peuvent identifier des opportunités pour mieux cibler leurs produits en analysant les habitudes d’achat conjuguées aux données économiques et démographiques. Leurs concepteurs et ingénieurs peuvent également recouper les commentaires des clients et des utilisateurs, les données de réparation et d’autres données pour identifier les opportunités d’amélioration des produits.

Production

Les fabricants peuvent suivre les tendances de qualité, les données de réparation, les taux de production et les données de performance des produits sur le terrain pour identifier les problèmes de production. Ils peuvent également détecter les améliorations pouvant être apportées aux processus afin d’accroître la qualité, gagner du temps, réduire les coûts, améliorer la performance des produits et/ou repérer tout besoin de renouvellement d’équipements.

Industries
des services

Dans le secteur des services, les utilisateurs peuvent trouver des opportunités similaires d’amélioration des produits en comparant les commentaires des clients (directs ou publiés sur les réseaux sociaux ou d’autres sources) et les données relatives aux services, canaux, performance des pairs, régions, tarifs, ou encore les données démographiques ou économiques.

Enfin, toutes ces découvertes doivent être transposées dans les prévisions et la planification afin que l’ensemble de l’entreprise soit en phase avec les changements de la demande anticipés grâce à une connaissance plus approfondie du client, et soit ainsi mieux positionnée pour exploiter les opportunités venant d’être identifiées.


Défis liés au data mining

  • Big Data : la génération de données est de plus en plus rapide, ce qui offre de plus en plus d’opportunités pour le data mining. Cependant, des outils d’exploration de données modernes sont nécessaires pour extraire une signification du Big Data, compte tenu du volume élevé, de la grande rapidité et de la grande variété des structures de données, ainsi que du volume croissant de données non structurées. De nombreux systèmes existants ont du mal à gérer, à stocker et à utiliser ce grand flux d’intrants.
  • Compétence de l’utilisateur : les outils d’exploration et d’analyses des données sont conçus pour aider les utilisateurs et les décideurs à comprendre et à obtenir des informations à partir de grands volumes de données. Bien que hautement techniques, ces outils puissants offrent désormais une excellente expérience utilisateur, de sorte que pratiquement tous les utilisateurs sont en mesure d’utiliser ces outils avec un minimum de formation. Toutefois, pour tirer pleinement profit des avantages, l’utilisateur doit comprendre les données disponibles et le contexte commercial des informations qu’il recherche. Il doit également savoir, au moins de manière générale, comment fonctionnent les outils et ce qu’ils peuvent faire. Ces outils ne sont pas hors de portée du responsable ou dirigeant moyen, mais nécessitent un apprentissage, raison pour laquelle les utilisateurs doivent consacrer du temps au développement de cette nouvelle compétence.
  • Qualité et disponibilité des données : avec ces énormes quantités de nouvelles données, il existe également des masses de données incomplètes, incorrectes, trompeuses, frauduleuses, endommagées ou simplement inutiles. Les outils peuvent contribuer à résoudre ce problème, mais les utilisateurs doivent constamment tenir compte de la source des données et de sa crédibilité et fiabilité. Les préoccupations en matière de confidentialité sont également importantes, tant en ce qui concerne l’acquisition des données que la prise en charge et la gestion une fois qu’elles sont en votre possession.

Pictogramme qui représente un entrepôt de données

Renforcez votre expertise en matière de gestion des données

Comprenez le processus de gestion des données et les avantages qu’il peut apporter à votre organisation.

En savoir plus

 


FAQ sur le data mining

Quelle est la différence entre le machine learning et le data mining ?

Le data mining consiste à utiliser des outils analytiques avancés pour extraire des informations utiles d’une accumulation de données. Le machine learning est un type d’intelligence artificielle (IA) qui permet aux systèmes d’apprendre par l’expérience. L’exploration de données peut utiliser le machine learning lorsque les programmes analytiques ont la possibilité d’adapter leurs fonctionnalités en fonction de l’analyse de données qu’ils effectuent.

Existe-t-il une différence entre le data mining et l’analyse de données ?

L’analyse des données est un terme général pour le large éventail de pratiques visant à identifier les informations utiles, à les évaluer et à fournir des réponses spécifiques. Le data mining est un type d’analyse des données qui se concentre sur l’exploration de grands ensembles de données combinés pour découvrir des modèles, des tendances et des relations susceptibles de générer des informations et des prévisions.

Le data mining est-il identique à la science des données ?

La science des données est un terme qui inclut de nombreuses technologies de l’information, y compris les statistiques, les mathématiques et les techniques de calcul sophistiquées appliquées aux données. Le data mining est un cas d’utilisation de la science des données centré sur l’analyse de grands ensembles de données provenant d’un large éventail de sources.

Le data mining est-il identique au data warehouse ?

Un data warehouse est un ensemble de données, généralement provenant de sources multiples (ERPCRM, par exemple) qu’une entreprise rassemblera dans l’entrepôt à des fins d’archivage et d’analyse à grande échelle, comme le data mining.

The post Qu’est-ce que le data mining ? appeared first on SAP France News.

Source de l’article sur sap.com

Le Big Data est le flot d’informations dans lequel nous nous trouvons tous les jours (des zettaoctets de données provenant de nos ordinateurs, des terminaux mobiles et des capteurs). Ces données sont utilisées par les entreprises pour orienter la prise de décisions, améliorer les processus et les stratégies, et créer des produits, des services et des expériences centrés sur le client.

Le Big Data désigne non seulement de gros volumes de données, mais aussi des données de nature variée et complexe. Il dépasse généralement la capacité des bases de données traditionnelles à capturer, gérer et traiter ce type de données. De plus, le Big Data peut provenir de n’importe où et de tout ce que nous sommes en mesure de surveiller numériquement. Les satellites, les appareils IoT (Internet des Objets), les radars et les tendances des réseaux sociaux ne sont que quelques exemples parmi la multitude de sources de données explorées et analysées pour rendre les entreprises plus résilientes et compétitives.


L’importance de l’analyse du Big Data

La véritable valeur du Big Data se mesure d’après votre capacité à l’analyser et à le comprendre. L’intelligence artificielle (IA), le machine learning et les technologies de base de données modernes permettent de visualiser et d’analyser le Big Data pour fournir des informations exploitables en temps réel. L’analyse du Big Data aide les entreprises à exploiter leurs données en vue de saisir de nouvelles opportunités et de créer de nouveaux modèles de gestion. Comme l’a si bien dit Geoffrey Moore, auteur et analyste de gestion, « sans analyse du Big Data, les entreprises sont aveugles et sourdes, errant sur le Web comme des cerfs sur une autoroute ».

How does Big Data and Analytics work? Simply Explained

Click the button below to load the content from YouTube.

How does Big Data and Analytics work? Simply Explained


L’évolution du Big Data

Aussi inconcevable que cela puisse paraître aujourd’hui, l’Apollo Guidance Computer a emmené l’homme sur la lune avec moins de 80 kilo-octets de mémoire. Depuis, la technologie informatique s’est développée à un rythme exponentiel, de même que la génération de données. La capacité technologique mondiale à stocker des données a doublé tous les trois ans depuis les années 1980. Il y a un peu plus de 50 ans, lors du lancement d’Apollo 11, la quantité de données numériques générées dans le monde aurait pu tenir dans un ordinateur portable. Aujourd’hui, l’IDC estime ce chiffre à 44 zettaoctets (soit 44 000 milliards de gigaoctets) et prévoit qu’il atteindra 163 zettaoctets en 2025.

44 zettaoctets de données numériques aujourd’hui, IDC

163 zettaoctets de données numériques en 2025, IDC

Plus les logiciels et la technologie se développent, moins les systèmes non numériques sont viables. Le traitement des données générées et collectées numériquement requiert des systèmes de data management plus avancés. En outre, la croissance exponentielle des plates-formes de réseaux sociaux, des technologies pour smartphones et des appareils IoT connectés numériquement ont contribué à l’émergence du Big Data.


Types de Big Data : que sont les données structurées et non structurées ?

Les ensembles de données sont généralement catégorisés en trois types, selon leur structure et la complexité de leur indexation.

Illustration des différents types de big data : données structurées, données non-structurées, données semi-structurées.

  1. Données structurées : ce type de données est le plus simple à organiser et à rechercher. Il peut inclure des données financières, des machine logs et des détails démographiques. Une feuille de calcul Microsoft Excel, avec sa mise en forme de colonnes et de lignes prédéfinies, offre un moyen efficace de visualiser les données structurées. Ses composants peuvent facilement être catégorisés, ce qui permet aux concepteurs et administrateurs de bases de données de définir des algorithmes simples pour la recherche et l’analyse. Même lorsque les données structurées sont très volumineuses, elles ne sont pas nécessairement qualifiées de Big Data, car elles sont relativement simples à gérer et ne répondent donc pas aux critères qui définissent le Big Data. Traditionnellement, les bases de données utilisent un langage de programmation appelé SQL (Structured Query Language) pour gérer les données structurées. SQL a été développé par IBM dans les années 1970 pour permettre aux développeurs de créer et gérer des bases de données relationnelles (de type feuille de calcul) qui commençaient à émerger à l’époque.
  2. Données non structurées : cette catégorie de données peut inclure des publications sur les réseaux sociaux, des fichiers audio, des images et des commentaires client ouverts. Ces données ne peuvent pas être facilement capturées dans les bases de données relationnelles standard en lignes et colonnes. Auparavant, les entreprises qui voulaient rechercher, gérer ou analyser de grandes quantités de données non structurées devaient utiliser des processus manuels laborieux. La valeur potentielle liée à l’analyse et à la compréhension de ces données ne faisait aucun doute, mais le coût associé était souvent trop exorbitant pour en valoir la peine. Compte tenu du temps nécessaire, les résultats étaient souvent obsolètes avant même d’être générés. Contrairement aux feuilles de calcul ou aux bases de données relationnelles, les données non structurées sont généralement stockées dans des lacs de données, des entrepôts de données et des bases de données NoSQL.
  3. Données semi-structurées : comme leur nom l’indique, les données semi-structurées intègrent à la fois des données structurées et non structurées. Les e-mails en sont un bon exemple, car ils incluent des données non structurées dans le corps du message, ainsi que d’autres propriétés organisationnelles telles que l’expéditeur, le destinataire, l’objet et la date. Les dispositifs qui utilisent le marquage géographique, les horodatages ou les balises sémantiques peuvent également fournir des données structurées avec un contenu non structuré. Une image de smartphone non identifiée, par exemple, peut indiquer qu’il s’agit d’un selfie et préciser l’heure et l’endroit où il a été pris. Une base de données moderne exécutant une technologie d’IA peut non seulement identifier instantanément différents types de données, mais aussi générer des algorithmes en temps réel pour gérer et analyser efficacement les ensembles de données disparates.

Les sources du Big Data

Les objets générateurs de données se développent à un rythme spectaculaire, depuis les drones jusqu’aux grille-pains. Toutefois, à des fins de catégorisation, les sources de données sont généralement divisées en trois types :

Illustration des différentes sources du big data : données sociales, données machine, données altérables.

Données sociales

Comme leur nom l’indique, les données sociales sont générées par les réseaux sociaux : commentaires, publications, images et, de plus en plus, vidéos. En outre, compte tenu de l’ubiquité croissante des réseaux 4G et 5G, on estime que le nombre de personnes dans le monde qui regardent régulièrement des contenus vidéo sur leur smartphone atteindra 2,72 milliards en 2023. Bien que les tendances concernant les réseaux sociaux et leur utilisation évoluent rapidement et de manière imprévisible, leur progression en tant que générateurs de données numériques est incontestable.

Données machine

Les machines et appareils IoT sont équipés de capteurs et ont la capacité d’envoyer et de recevoir des données numériques. Les capteurs IoT aident les entreprises à collecter et traiter les données machine provenant des appareils, des véhicules et des équipements. Globalement, le nombre d’objets générateurs de données augmente rapidement, des capteurs météorologiques et de trafic jusqu’à la surveillance de la sécurité. Selon l’IDC, il y aura plus de 40 milliards d’appareils IoT en 2025, générant près de la moitié des données numériques mondiales.

Données altérables

Il s’agit des données parmi les plus évolutives au monde. Par exemple, un détaillant international traite plus d’un million de transactions client par heure. Si l’on ajoute à cela les transactions d’achat et bancaires au niveau mondial, on comprend mieux le volume phénoménal de données générées. En outre, les données altérables contiennent de plus en plus de données semi-structurées, y compris des images et des commentaires, ce qui les rend d’autant plus complexes à gérer et à traiter.


Les cinq V du Big Data

Ce n’est pas parce qu’un ensemble de données est volumineux qu’il s’agit nécessairement de Big Data. Pour être qualifiées en tant que telles, les données doivent posséder au minimum les cinq caractéristiques suivantes :

Illustration des 5 V du Big Data : Volume, Vitesse, Variété, Véracité, Valeur.

  1. Volume : même si le volume n’est pas le seul composant qui constitue le Big Data, il s’agit d’une de ses caractéristiques principales. Pour gérer et exploiter pleinement le Big Data, des algorithmes avancés et des analyses pilotées par l’IA sont nécessaires. Mais avant tout cela, il doit exister un moyen fiable et sécurisé de stocker, d’organiser et d’extraire les téraoctets de données détenus par les grandes entreprises.
  2. Vitesse : auparavant, les données générées devaient ensuite être saisies dans un système de base de données traditionnel (souvent manuellement) avant de pouvoir être analysées ou extraites. Aujourd’hui, grâce à la technologie du Big Data, les bases de données sont capables de traiter, d’analyser et de configurer les données lorsqu’elles sont générées, parfois en l’espace de quelques millisecondes. Pour les entreprises, cela signifie que les données en temps réel peuvent être exploitées pour saisir des opportunités financières, répondre aux besoins des clients, prévenir la fraude et exécuter toute autre activité pour laquelle la rapidité est un facteur clé.
  3. Variété : les ensembles de données contenant uniquement des données structurées ne relèvent pas nécessairement du Big Data, quel que soit leur volume. Le Big Data comprend généralement des combinaisons de données structurées, non structurées et semi-structurées. Les solutions de gestion des données et les bases de données traditionnelles n’offrent pas la flexibilité et le périmètre nécessaires pour gérer les ensembles de données complexes et disparates qui constituent le Big Data.
  4. Véracité : bien que les bases de données modernes permettent aux entreprises d’accumuler et d’identifier des volumes considérables de Big Data de différents types, elles ne sont utiles que si elles sont précises, pertinentes et opportunes. S’agissant des bases de données traditionnelles alimentées uniquement avec des données structurées, le manque de précision des données était souvent dû à des erreurs syntaxiques et des fautes de frappe. Les données non structurées présentent toute une série de nouvelles difficultés en matière de véracité. Les préjugés humains, le « bruit social » et les problèmes liés à la provenance des données peuvent avoir un impact sur la qualité des données.
  5. Valeur : les résultats de l’analyse du Big Data sont souvent fascinants et inattendus. Mais pour les entreprises, l’analyse du Big Data doit fournir une visibilité qui les aident à gagner en compétitivité et en résilience, et à mieux servir leurs clients. Les technologies modernes du Big Data offrent la possibilité de collecter et d’extraire des données susceptibles de procurer un avantage mesurable à la fois en termes de résultats et de résilience opérationnelle.

Avantages du Big Data

Les solutions modernes de gestion du Big Data permettent aux entreprises de transformer leurs données brutes en informations pertinentes avec une rapidité et une précision sans précédent.

  • Développement de produits et de services :l’analyse du Big Data permet aux développeurs de produits d’analyser les données non structurées, telles que les témoignages clients et les tendances culturelles, et de réagir rapidement.
  • Maintenance prédictive : dans le cadre d’uneenquête internationale, McKinsey a constaté que l’analyse du Big Data émanant des machines IoT pouvait réduire les coûts de maintenance des équipements jusqu’à 40 %.
  • Expérience client :dans le cadre d’une enquête réalisée en 2020 auprès de responsables d’entreprises du monde entier, Gartner a déterminé que « les entreprises en croissance collectent plus activement des données sur l’expérience client que les entreprises à croissance nulle ». L’analyse du Big Data permet aux entreprises d’améliorer et de personnaliser l’expérience de leurs clients avec leur marque.
  • Gestion de la résilience et des risques :la pandémie de COVID-19 a été une véritable prise de conscience pour de nombreux dirigeants d’entreprise qui se sont rendu compte à quel point leur activité était vulnérable. La visibilité offerte par le Big Data peut aider les entreprises à anticiper les risques et à se préparer aux imprévus.
  • Économies et efficacité accrue : lorsque les entreprises effectuent une analyse avancée du Big Data pour tous les processus de l’organisation, elles peuvent non seulement détecter les inefficacités, mais aussi déployer des solutions rapides et efficaces.
  • Amélioration de la compétitivité : les informations obtenues grâce au Big Data peuvent aider les entreprises à réaliser des économies, à satisfaire leurs clients, à concevoir de meilleurs produits et à innover dans les opérations de gestion.

IA et Big Data

La gestion du Big Data repose sur des systèmes capables de traiter et d’analyser efficacement de gros volumes d’informations disparates et complexes. À cet égard, le Big Data et l’IA ont une relation de réciprocité. Sans l’IA pour l’organiser et l’analyser, le Big Data n’aurait pas grande utilité. Et pour que l’IA puisse générer des analyses suffisamment fiables pour être exploitables, le Big Data doit contenir des ensembles de données suffisamment étendus. Comme l’indique Brandon Purcell, analyste chez Forrester Research, « les données sont au cœur de l’intelligence artificielle. Un système d’IA doit apprendre des données pour remplir sa fonction ».

« Les données sont au cœur de l’intelligence artificielle. Un système d’IA doit apprendre des données pour remplir sa fonction ».

Brandon Purcell, analyste, Forrester Research


Machine learning et Big Data

Les algorithmes de machine learning définissent les données entrantes et identifient des modèles associés. Ces informations permettent de prendre des décisions avisées et d’automatiser les processus. Le machine learning se nourrit du Big Data, car plus les ensembles de données analysés sont fiables, plus le système est susceptible d’apprendre, de faire évoluer et d’adapter ses processus en continu.


Technologies du Big Data

Architecture du Big Data

À l’instar de l’architecture du bâtiment, l’architecture du Big Data fournit un modèle pour la structure de base déterminant la manière dont les entreprises gèrent et analysent leurs données. L’architecture du Big Data mappe les processus requis pour gérer le Big Data à travers quatre « couches » de base, des sources de données au stockage des données, puis à l’analyse du Big Data, et enfin via la couche de consommation dans laquelle les résultats analysés sont présentés en tant que Business Intelligence.

‍Analyse du Big Data

Ce processus permet de visualiser les données de manière pertinente grâce à l’utilisation de la modélisation des données et d’algorithmes spécifiques aux caractéristiques du Big Data. Dans le cadre d’une étude approfondie et d’une enquête de la MIT Sloan School of Management, plus de 2 000 dirigeants d’entreprise ont été interrogés sur leur expérience en matière d’analyse du Big Data. Comme on pouvait s’y attendre, ceux qui s’étaient impliqués dans le développement de stratégies de gestion du Big Data ont obtenu les résultats les plus significatifs.

Big Data et Apache Hadoop

Imaginez une grande boîte contenant 10 pièces de 10 centimes et 100 pièces de 5 centimes. Puis imaginez 10 boîtes plus petites, côte à côte, contenant chacune 10 pièces de 5 centimes et une seule pièce de 10 centimes. Dans quel scénario sera-t-il plus facile de repérer les pièces de 10 centimes ? Hadoop fonctionne sur ce principe. Il s’agit d’une structure en open source permettant de gérer le traitement du Big Data distribué sur un réseau constitué de nombreux ordinateurs connectés. Ainsi, au lieu d’utiliser un gros ordinateur pour stocker et traiter toutes les données, Hadoop regroupe plusieurs ordinateurs sur un réseau pouvant évoluer presque à l’infini et analyse les données en parallèle. Ce processus utilise généralement un modèle de programmation appelé MapReduce, qui coordonne le traitement du Big Data en regroupant les ordinateurs distribués.

Lacs de données, entrepôts de données et NoSQL

Les bases de données traditionnelles de type feuille de calcul SQL servent à stocker les données structurées. Le Big Data non structuré et semi-structuré nécessite des modèles de stockage et de traitement uniques, car il ne peut pas être indexé et catégorisé. Les lacs de données, les entrepôts de données et les bases de données NoSQL sont des référentiels de données capables de gérer les ensembles de données non traditionnels. Un lac de données est un vaste pool de données brutes qui n’ont pas encore été traitées. Un entrepôt de données est un référentiel de données qui ont déjà été traitées à des fins spécifiques. Les bases de données NoSQL fournissent un schéma flexible qui peut être modifié en fonction de la nature des données à traiter. Ces systèmes présentent chacun des avantages et des inconvénients, c’est pourquoi de nombreuses entreprises utilisent plutôt une combinaison de ces référentiels de données pour répondre au mieux à leurs besoins.

Bases de données in-memory

Les bases de données traditionnelles sur disque ont été conçues pour SQL et les bases de données relationnelles. Bien qu’elles soient capables de traiter de gros volumes de données structurées, elles ne sont pas adaptées au stockage et au traitement des données non structurées. Dans le cas des bases de données in-memory, le traitement et l’analyse se font entièrement dans la RAM, pour ne pas avoir à extraire les données d’un système sur disque. Les bases de données in-memory reposent également sur des architectures distribuées. Cela signifie qu’elles peuvent atteindre des vitesses beaucoup plus élevées en utilisant le traitement parallèle, par rapport aux modèles de base de données sur disque à un seul nœud.


Fonctionnement du Big Data

Le Big Data remplit ses fonctions lorsque son analyse fournit des informations pertinentes et exploitables qui améliorent l’activité de manière significative. Pour se préparer à la transition vers le Big Data, les entreprises doivent s’assurer que leurs systèmes et processus sont en mesure de collecter, de stocker et d’analyser le Big Data.

Illustration du fonctionnement du Big Data : collecter le Big Data, stocker le Big Data, Analyser le Big Data

  1. Collecter le Big Data.Une grande partie du Big Data est constituée d’énormes ensembles de données non structurées qui émanent de sources disparates et incohérentes. Les bases de données traditionnelles sur disque et les mécanismes d’intégration des données ne sont pas suffisamment performants pour les gérer. La gestion du Big Data requiert des solutions de base de données in-memory et des solutions logicielles spécifiques de l’acquisition de ce type de données.
  2. Stocker le Big Data.Comme son nom l’indique, le Big Data est volumineux. De nombreuses entreprises utilisent des solutions de stockage sur site pour leurs données existantes et espèrent réaliser des économies en réutilisant ces référentiels pour traiter le Big Data. Toutefois, le Big Data est plus performant lorsqu’il n’est pas soumis à des contraintes de taille et de mémoire. Les entreprises qui n’intègrent pas dès le départ des solutions de stockage Cloud dans leurs modèles de Big Data le regrettent souvent quelques mois plus tard.
  3. Analyser le Big Data. Il est impossible d’exploiter pleinement le potentiel du Big Data sans utiliser les technologies d’IA et de machine learning pour l’analyser. L’un des cinq V du Big Data est la « vitesse ». Pour être utiles et exploitables, les informations du Big Data doivent être générées rapidement. Les processus d’analyse doivent s’auto-optimiser et tirer régulièrement profit de l’expérience, un objectif qui ne peut être atteint qu’avec l’IA et les technologies modernes de bases de données.

Applications du Big Data

La visibilité offerte par le Big Data est bénéfique à la plupart des entreprises ou secteurs d’activité. Cependant, ce sont les grandes entreprises aux missions opérationnelles complexes qui en tirent souvent le meilleur parti.

Finance

Dans le Journal of Big Data, une étude de 2020 souligne que le Big Data « joue un rôle important dans l’évolution du secteur des services financiers, en particulier dans le commerce et les investissements, la réforme fiscale, la détection et les enquêtes en matière de fraude, l’analyse des risques et l’automatisation ». Le Big Data a également contribué à transformer le secteur financier en analysant les données et les commentaires des clients pour obtenir les informations nécessaires à l’amélioration de la satisfaction et de l’expérience client. Les ensembles de données altérables figurent parmi les plus importants et les plus évolutifs au monde. L’adoption croissante de solutions avancées de gestion du Big Data permettra aux banques et aux établissements financiers de protéger ces données et de les utiliser d’une manière qui bénéficie à la fois au client et à l’entreprise.

Hygiène et santé
publique

L’analyse du Big Data permet aux professionnels de santé d’établir des diagnostics plus précis, fondés sur des données avérées. De plus, le Big Data aide les administrateurs d’hôpitaux à identifier les tendances, à gérer les risques et à limiter les dépenses inutiles, afin de consacrer le maximum de fonds aux soins des patients et à la recherche. En cette période de pandémie, les chercheurs du monde entier s’efforcent de traiter et de gérer au mieux la COVID-19, et le Big Data joue un rôle fondamental dans ce processus. Un article de juillet 2020 paru dans The Scientist explique comment des équipes médicales ont pu collaborer et analyser le Big Data afin de lutter contre le coronavirus : « Nous pourrions transformer la science clinique en exploitant les outils et les ressources du Big Data et de la science des données d’une manière que nous pensions impossible ».

Transport et logistique

L’« effet Amazon » est un terme qui définit la manière dont Amazon a fait de la livraison en un jour la nouvelle norme, les clients exigeant désormais la même vitesse d’expédition pour tout ce qu’ils commandent en ligne. Le magazine Entrepreneur souligne qu’en raison de l’effet Amazon, « la course logistique au dernier kilomètre ne fera que s’intensifier ». Les entreprises du secteur s’appuient de plus en plus sur l’analyse du Big Data pour optimiser la planification des itinéraires, la consolidation des charges et les mesures d’efficacité énergétique.

Éducation

Depuis l’apparition de la pandémie, les établissements d’enseignement du monde entier ont dû réinventer leurs programmes d’études et leurs méthodes d’enseignement afin de faciliter l’apprentissage à distance. L’un des principaux défis a été de trouver des moyens fiables d’analyser et d’évaluer la performance des étudiants et l’efficacité globale des méthodes d’enseignement en ligne. Un article paru en 2020 au sujet de l’impact du Big Data sur la formation et l’apprentissage en ligne indique, au sujet des enseignants, que « le Big Data les aide à gagner en confiance pour personnaliser l’enseignement, développer l’apprentissage mixte, transformer les systèmes d’évaluation et promouvoir l’apprentissage continu ».

Énergie et services publics

Selon le U.S. Bureau of Labor Statistics, le service public consacre plus de 1,4 milliard de dollars aux relevés de compteurs et s’appuie généralement sur des compteurs analogiques et des lectures manuelles peu fréquentes. Les relevés de compteurs intelligents fournissent des données numériques plusieurs fois par jour et, grâce à l’analyse du Big Data, ces informations permettent d’accroître l’efficacité de la consommation énergétique, ainsi que la précision des prix et des prévisions. En outre, lorsque les agents n’ont plus à se charger des relevés de compteurs, la saisie et l’analyse des données peuvent permettre de les réaffecter plus rapidement là où les réparations et les mises à niveau sont les plus urgentes.

Publié en anglais sur insights.sap.com

The post Qu’est-ce que le Big Data ? appeared first on SAP France News.

Source de l’article sur sap.com

Etes-vous satisfait de votre système ERP ? Est-il temps de le mettre à niveau ? Vous avez peut-être écouté les témoignages de vos pairs quant à leur passage à des ERP modernes. Ou peut-être ressentez-vous le besoin de mettre en place de nouveaux processus pour rester compétitif et répondre aux attentes de vos clients, nouveaux processus que votre système actuel ne peut proposer. Quoi qu’il en soit, il est toujours bon d’évaluer en continu les performances du système, d’identifier les axes d’amélioration et d’anticiper les problèmes qui pourraient subvenir.

Le système ERP parfait existe-t-il ?

La réponse courte est « non ». Et même si le système parfait existait pour vos besoins spécifiques à un moment donné, ces besoins évoluent en permanence. Il faut donc garder le contrôle, évaluer dans quelle mesure votre ERP répond à vos besoins actuels et identifier les tendances qui pourraient entraîner des problèmes.

Il est en vogue de qualifier les systèmes installés de « legacy ERP ». Ce qui suggère une ancienne technologie et des systèmes obsolètes. C’est injuste car de nombreux systèmes installés sont régulièrement entretenus, mis à niveau et pleinement capables d’évoluer, de s’adapter, aux nouveaux besoins.

Cela dit, les mises à niveau des ERP sont facultatives, bien que fortement encouragées par les fournisseurs. Il est important de se tenir au courant des corrections et des améliorations disponibles. En cas de problèmes ou tendances défavorables, assurez-vous que votre système dispose de toutes les mises à jour et de la dernière version. Regardez ensuite si votre fournisseur propose des modules complémentaires ou des améliorations qui pourraient remédier aux lacunes constatées. Déterminez ce qu’il faudrait pour mettre en œuvre ces correctifs, en termes d’argent et d’efforts, et utilisez ces informations pour évaluer le coût du maintien de votre solution actuelle.

Votre logiciel ERP vous laisse-t-il tomber ?

En résumé, gardez votre système ERP à jour. Surveillez aussi de près ses performances. Les besoins, les vôtres comme ceux de vos clients, vont évoluer. Vous devez donc vous assurer que votre système ERP peut y répondre.

L’auto-évaluation mentionnée ci-dessus peut vous aider à identifier les défaillances et les sujets de préoccupation, par exemple :

  • Votre système est incapable de répondre aux nouveaux besoins ou limite les nouvelles initiatives.
  • Il ne prend pas en charge les nouvelles technologies et normes, ou seulement avec difficulté, à coût élevé et avec des retards. Le fournisseur est lent à intégrer de nouveaux éléments et nouvelles fonctionnalités.
  • Les fonctions sont difficiles à maîtriser et à utiliser, et nuisent à l’efficacité au lieu de la favoriser.
  • Le temps de réponse est excessivement lent. Le stockage et la récupération de l’information sont inadéquats, lourds ou ne répondent tout simplement pas aux besoins actuels en constante expansion.
  • Le système est coûteux et difficile à maintenir et à gérer, et ne bénéficie pas d’un soutien adéquat de la part de votre fournisseur.
  • Si votre système est vraiment un ancien ERP dont l’assistance du fournisseur s’amenuise, ou dont l’assistance technique se réduit, les programmeurs et analystes compétents deviendront plus chers et plus difficiles à trouver à mesure que le système deviendra plus obsolète et moins fiable.

C’est le genre de problèmes qui peuvent évoluer lentement et passer inaperçus pendant longtemps. Puis, soudain, il devient évident que les lacunes du système causent de graves problèmes ​- et qu’il faut faire quelque chose.

Combien dépensez-vous pour votre ERP ?

De nombreuses entreprises sont surprises lorsqu’elles font l’analyse et découvrent ce qu’il en coûte réellement pour maintenir leur système ERP existant en place et opérationnel. Cela peut sembler curieux pour les ETI, qui surveillent généralement de très près leurs dépenses. Mais il n’est pas toujours facile de distinguer les coûts directs et indirects associés à l’ERP.

Outre les frais mensuels et annuels versés au(x) fournisseur(s) de logiciels et au(x) fournisseur(s) de matériel, il y a des dépenses courantes pour le service et l’assistance de vos différents fournisseurs de services (par exemple service matériel, conseil ou réseau). N’oubliez pas d’inclure les coûts de mise à jour si vous avez détecté (ou pensez) que des mises à jour ou des améliorations sont nécessaires pour résoudre des problèmes existants ou anticipés, comme indiqué ci-dessus.

Considérez également les coûts internes directs du département informatique, y compris les salaires et les avantages, les locaux, les commodités et les fournitures. Essayez de distinguer ceux qui soutiennent directement votre ERP. N’oubliez pas qu’au moins certains de ces coûts subsisteront après la mise à niveau et le déploiement d’un nouveau système, surtout si vous remplacez un système traditionnel sur site par un autre système sur site. La structure des coûts pour les logiciels SaaS (Software-as-a-Service) basés sur le cloud est différente, mais vous aurez toujours besoin d’un point de comparaison pour prendre une décision défendable. Que cette décision soit de garder votre système actuel, de commencer une mise à niveau ERP ou de poursuivre un remplacement.

Quel serait le coût d’un nouveau système ?

Le coût potentiel du passage à un nouveau système ERP vous inquiète ? C’est compréhensible. Un nouveau système ERP est probablement l’une des plus grosses dépenses en équipement non productif qu’une entreprise fera au cours d’une année donnée. Néanmoins, par rapport aux avantages offerts et au montant dépensé pour le maintien du système actuel, la plupart des entreprises estiment que le coût est tout à fait raisonnable et justifiable. N’oubliez pas de penser en termes de coûts du cycle de vie – le coût total sur une période donnée, par exemple cinq à sept ans.

Lorsque vous examinez le coût d’acquisition et de déploiement d’un système de remplacement, sachez que les coûts du matériel et des licences logicielles ne sont qu’une partie de l’équation. Vous devez également inclure les éléments suivants dans votre évaluation :

  • La mise en réseau et les périphériques tels que les scanners de codes-barres, les appareils mobiles et les logiciels clients, ainsi que l’assistance.
  • La conversion et la saisie des données dans le nouveau système, ainsi que les dispositions pour l’archivage et l’accès aux enregistrements historiques.
  • La préparation aux sinistres, y compris les systèmes de sauvegarde ou de basculement, les ressources de récupération des données, la connectivité redondante et les communications.
  • La formation de l’équipe de déploiement de l’ERP et de tous les futurs utilisateurs (ce point est d’une importance capitale, ne le négligez pas).
  • Le développement et la documentation de nouveaux flux de travail.
  • L’assistance à l’implémentation. Il est probable qu’un certain niveau d’assistance sera inclus dans l’offre du fournisseur principal du système. Mais vous voudrez peut-être faire appel à une assistance supplémentaire du ou des fournisseurs, à des consultants externes, à votre cabinet comptable ou à d’autres personnes pour certains ou tous les éléments énumérés ci-dessus.
  • La charge supplémentaire pour vos employés pendant le déploiement sous forme d’heures supplémentaires, d’embauche d’intérimaires pour les aider dans leurs tâches habituelles afin qu’ils aient le temps de travailler sur le déploiement, ou de primes et autres incitations pour maintenir la motivation des salariés.

Sachez que la structure des coûts des systèmes SaaS basés sur le cloud est très différente de l’approche traditionnelle d’achat et d’implémentation sur site. Avec le SaaS, il y a peu ou pas de frais initiaux pour le matériel, car il s’agit essentiellement d’un abonnement. Un contrat SaaS inclut généralement une grande partie des coûts de maintenance et d’assistance. De sorte que vos coûts informatiques internes courants seront considérablement réduits. La plupart des entreprises estiment que le coût total sur cinq à sept ans avec un contrat SaaS sera probablement inférieur au coût total de l’achat et de la gestion en interne.

Au moment de prendre la décision de conserver votre système actuel ou d’envisager un remplacement, pensez aux bénéfices que vous pouvez en tirer. Avec une nouvelle solution ERP, vous bénéficierez d’une interface utilisateur moderne, de capacités et de fonctions supplémentaires, et vous améliorerez votre avantage concurrentiel. Tandis que si vous conservez votre ancien système, vous limitez votre capacité à rester agile, productif et compétitif. Bien que vous ne cherchiez pas en premier lieu à réaliser des économies, les exemples de réussite avec des ERP modernes démontrent que les bénéfices du passage à un nouveau système sont souvent moins coûteux et compensent les frais de mise à niveau.

Comment justifier financièrement un nouveau système ERP ?

Lorsqu’elles prennent une décision de cette importance, la plupart des entreprises exigent une analyse coûts-avantages sous la forme d’un retour sur investissement (ROI) attendu. Le côté coûts est facile : additionnez les coûts prévus comme indiqué ci-dessus. Du côté des avantages, il peut y avoir des économies directes sur les coûts informatiques, mais pour énumérer les principaux avantages, l’entreprise doit prévoir comment le système changera l’environnement de travail et permettra d’améliorer les performances, la productivité et le service à la clientèle.

  • Amélioration des performances : De nombreux projets ERP se justifient par les améliorations attendues en termes d’efficacité (réduction de la main-d’œuvre directe) et de réduction des coûts (y compris, mais sans s’y limiter, la réduction des stocks). Sachez toutefois que le système ne crée pas ces avantages par sa simple implémentation. Le système organise, analyse et présente les données de manière à ce que les responsables puissent mieux utiliser les ressources humaines et prendre de meilleures décisions, et c’est cela qui apporte les plus grands bénéfices. Gardez cela à l’esprit lorsque vous établissez un budget pour la formation des utilisateurs et pour la mise en œuvre de procédures améliorées.
  • Un meilleur service à la clientèle : Ces avantages sont moins directs, mais encore plus importants. En améliorant le service à la clientèle, vous pouvez théoriquement augmenter les ventes et les bénéfices, accroître votre part de marché et peut-être même augmenter vos marges, car un bon service à la clientèle apporte une valeur ajoutée au client sans ajouter de coût au produit lui-même. Dans certains cas, les améliorations du service à la clientèle deviennent une condition de survie. Car lorsqu’un nouveau ou un gros client attend des fonctionnalités telles que la transmission électronique des commandes ou l’amélioration des rapports informatisés, votre système ERP doit être à la hauteur.
  • Changements de l’environnement de travail : les systèmes d’aujourd’hui sont conçus pour être faciles à utiliser (l’UX, l’expérience utilisateur, est le mot actuellement à la mode) pour un accès rapide et facile à l’information. Le travail et le flux de travail de chaque utilisateur étant uniques, les systèmes actuels sont hautement personnalisés pour offrir à chacun les écrans et les processus de travail les plus efficaces et confortables. Cette efficacité accrue permettra aux salariés d’en faire plus et de gérer un plus grand volume d’affaires sans avoir besoin d’embaucher. Notez qu’il est déconseillé de justifier le système par une réduction des effectifs. Cela ne se produira probablement pas et la perspective de suppressions d’emplois ne motivera pas les salariés à adopter le système et à contribuer à son succès.

La sélection d’un ERP n’est qu’un début

Tout en suivant les conseils pour évaluer les systèmes ERP, gardez à l’esprit que le remplacement des systèmes existants n’est pas un processus simple ou rapide, mais qu’il vaut la peine car il peut apporter des avantages considérables lorsque l’ERP est correctement sélectionné et déployé.

La question que la plupart des entreprises se posent à ce stade est la suivante : « Combien de temps faut-il pour choisir et remplacer un système existant ? » Il n’y a pas de réponse unique. Cela dépend de la taille et de la complexité de l’organisation, du fait que l’un ou l’autre ou les deux systèmes (ancien et nouveau) soient basés sur le cloud, de la dynamique de l’entreprise et de l’équipe de déploiement, du niveau d’engagement de la direction dans le projet, et du degré de coopération ou de résistance au sein de la communauté des utilisateurs… pour ne citer que quelques-unes des variables. Certains déploiements peuvent être réalisés en quelques mois, d’autres prennent un an ou plus. Un partenaire expérimenté peut vous aider à établir un calendrier réaliste lorsque vous définissez votre plan de projet.

Nous n’avons pas besoin de vous répéter que le remplacement de votre système ERP sera forcément perturbant. S’il n’est pas possible de totalement les éviter, les perturbations peuvent cependant être minimisées grâce à un déploiement bien planifié et géré.

The post Il est temps de mettre votre ERP à niveau ? Guide pour le remplacement de votre ancien ERP appeared first on SAP France News.

Source de l’article sur sap.com

Les données jouent un rôle clé dans le fonctionnement des entreprises. Il est donc essentiel de leur donner du sens et de déterminer leur pertinence parmi la multitude d’informations générées par les systèmes et technologies qui soutiennent nos économies mondiales hautement connectées. Les données sont omniprésentes, mais inutiles en tant que telles. Pour exploiter toutes les formes de données et les utiliser de manière pratique et efficace dans les chaînes logistiques, les réseaux d’employés, les écosystèmes de clients et de partenaires, etc., les entreprises doivent mettre en œuvre une stratégie, une gouvernance et un modèle de data management performants.

Qu’est-ce que le data management (ou gestion des données) ? Le data management consiste à collecter, organiser et accéder aux données en vue d’améliorer la productivité, l’efficacité et la prise de décision. Compte tenu de l’importance accrue des données, il est essentiel que toute entreprise, indépendamment de sa taille et de son secteur d’activité, mette en place un système moderne et une stratégie efficace de data management.

Petite infographie qui illustre les principaux éléments du data management

Le processus de data management comprend un large éventail de tâches et de procédures. Par exemple :

  • Collecte, traitement, validation et stockage des données
  • Intégration de différents types de données émanant de sources disparates, notamment des données structurées et non structurées
  • Haute disponibilité des données et restauration après sinistre
  • Gestion de l’utilisation des données et de l’accès aux données par les collaborateurs et les applications
  • Protection et sécurisation des données en garantissant leur confidentialité

Pourquoi le data management est-il important ?

Les applications, solutions analytiques et algorithmes utilisés dans une entreprise (c’est-à-dire les règles et les processus associés au moyen desquels les ordinateurs résolvent les problèmes et exécutent les tâches) reposent sur un accès transparent aux données. Fondamentalement, un système de data management permet de garantir la sécurité, la disponibilité et l’exactitude des données. Mais ses avantages ne s’arrêtent pas là.

Transformer le Big Data en actif à forte valeur ajoutée

Les données trop volumineuses peuvent être inutiles, voire nuisibles, si elles ne sont pas gérées de manière appropriée. Toutefois, avec les outils adéquats, les entreprises peuvent exploiter le Big Data pour enrichir plus que jamais les renseignements dont elles disposent et améliorer leurs capacités prévisionnelles. Le Big Data peut les aider à mieux comprendre les attentes de leurs clients et à leur offrir une expérience exceptionnelle. L’analyse et l’interprétation du Big Data permet également de mettre en place de nouveaux modèles de gestion axés sur les données, tels que les offres de services basées sur l’Internet des Objets (IoT) en temps réel et les données de capteurs.

163 zettaoctets de données en 2025 (IDC)

80 % des données mondiales seront non structurées en 2025 (IDC)

Les Big Data sont des ensembles de données extrêmement volumineux, souvent caractérisés par les cinq V : le volume de données collectées, la variété des types de données, la vitesse à laquelle les données sont générées, la véracité des données et leur valeur.

Il est bien connu que les entreprises pilotées par les données disposent d’un avantage concurrentiel majeur. En utilisant des outils avancés, les entreprises peuvent gérer des volumes de données plus importants provenant de sources plus diversifiées que jamais. Elles peuvent aussi exploiter des données très variées, structurées et non structurées ou en temps réel, notamment les données des dispositifs IoT, les fichiers audio et vidéo, les données du parcours de navigation sur Internet et les commentaires sur les réseaux sociaux, ce qui leur offre davantage de possibilités de monétiser les données et de les utiliser comme véritable actif.

Créer une infrastructure de données qui favorise la transformation numérique

On dit souvent que les données sont le moteur de la transformation numérique. L’intelligence artificielle (IA), le machine learning, l’Industrie 4.0, les analyses avancées, l’Internet des Objets et l’automatisation intelligente requièrent d’énormes volumes de données ponctuelles, exactes et sécurisées.

L’importance des données et des technologies axées sur les données n’a fait que se renforcer depuis l’apparition de la COVID-19. De nombreuses entreprises ressentent le besoin urgent d’exploiter leurs données de manière plus efficace pour prévoir les événements à venir, réagir rapidement et intégrer la résilience dans leurs plans et modèles de gestion.

Le machine learning, par exemple, requiert des ensembles de données extrêmement volumineux et diversifiés pour « apprendre », identifier des modèles complexes, résoudre les problèmes et assurer la mise à jour et l’exécution efficace des modèles et algorithmes. Les analyses avancées (qui exploitent souvent l’apprentissage automatique) requièrent également de gros volumes de données de haute qualité pour pouvoir générer des informations pertinentes et exploitables qui puissent être utilisées en toute confiance. Quant à l’IoT et l’IoT industriel, ils s’exécutent sur un flux constant de données de machines et capteurs à 1,6 millions de kilomètres par minute.

Les données sont le dénominateur commun de tout projet de transformation numérique. Pour transformer leurs processus, tirer parti des nouvelles technologies et devenir intelligentes, les entreprises doivent disposer d’une infrastructure de données solide. En résumé, d’un système de data management moderne.

« La survie de toute entreprise dépendra d’une architecture agile centrée sur les données, capable de s’adapter au rythme constant du changement. »

Donald Feinberg, vice-président de Gartner

Garantir la conformité aux lois en matière de confidentialité des données

Une gestion appropriée des données est également essentielle pour garantir la conformité aux lois nationales et internationales en matière de confidentialité des données, telles que le Règlement général sur la protection des données (RGPD) et la loi californienne sur la protection de la vie privée des consommateurs (California Consumer Privacy Act ou « CCPA ») aux États-Unis, et répondre aux exigences de confidentialité et de sécurité spécifiques du secteur. En outre, il est essentiel de mettre en place des politiques et procédures solides en matière de data management pour satisfaire aux exigences d’audit.


Systèmes et composants du data management

Les systèmes de data management reposent sur des plates-formes et intègrent une combinaison de composants et processus qui vous aident à tirer profit de vos données. Il peut s’agir de systèmes de gestion de base de données, d’entrepôts de données, de lacs de données, d’outils d’intégration de données, d’outils analytiques, etc.

Systèmes de gestion de base de données (SGBD)

Il existe différents types de systèmes de gestion de base de données. Les systèmes les plus courants sont les systèmes de gestion de base de données relationnelle (SGBDR), les systèmes de gestion de base de données orientée objet (SGBDOO), les bases de données in-memory et les bases de données en colonnes.

Petite infographie des différents types de systèmes de gestion de base de données

  • Système de Gestion de Base de Données Relationnelle (SGBDR) :il s’agit d’un système qui contient des définitions de données permettant aux programmes et aux systèmes d’extraction de référencer les éléments de données par nom, plutôt que de décrire à chaque fois la structure et l’emplacement des données. En fonction du modèle relationnel, le système SGBDR gère également les relations entre les éléments de données qui améliorent l’accès et empêchent les doublons. Par exemple, la définition et les caractéristiques de base d’un élément sont stockées une seule fois et liées aux lignes de détail des commandes clients et aux tables de détermination du prix.
  • Système de Gestion de Base de Données Orientée Objet (SGBDOO) :il s’agit d’une approche différente de la définition et du stockage de données, développée et utilisée par les développeurs de systèmes de programmation orientée objet (SPOO). Les données sont stockées en tant qu’objets, entités autonomes et auto-décrites, plutôt que dans des tables à l’image du système SGBDR.
  • Base de données in-memory :une base de données in-memory (BDIM) stocke les données dans la mémoire principale (RAM) d’un ordinateur, plutôt que sur un lecteur de disque. L’extraction des données étant beaucoup plus rapide qu’à partir d’un système basé sur disque, les bases de données in-memory sont couramment utilisées par les applications qui exigent des temps de réponse rapides. Par exemple, les données qu’il fallait auparavant compiler dans un rapport sont désormais accessibles et peuvent être analysées en quelques minutes, voire quelques secondes.
  • Base de données en colonnes : une base de données en colonnes stocke des groupes de données liées (une « colonne » d’informations) pour y accéder plus rapidement. Cette base de données est utilisée dans les applications de gestion in-memory modernes et dans de nombreuses applications d’entrepôt de données autonomes dans lesquelles la vitesse d’extraction (d’un éventail de données limité) est importante.

Entrepôts et lacs de données

  • Entrepôt de données :un entrepôt de données est un référentiel central de données cumulées à partir de différentes sources à des fins de reporting et d’analyse.
  • Lac de données :un lac de données est un vaste pool de données stockées dans leur format brut ou naturel. Les lacs de données sont généralement utilisés pour stocker le Big Data, y compris les données structurées, non structurées et semi-structurées.

Gestion des données de base (MDM)

La gestion des données de base est une discipline qui consiste à créer une référence de base fiable (référence unique) de toutes les données de gestion importantes, telles que les données produit, les données client, les données d’actifs, les données financières, etc. Elle garantit que l’entreprise n’utilise pas plusieurs versions potentiellement incohérentes des données dans ses différentes activités, y compris dans les processus, les opérations, l’analyse et le reporting. La consolidation des données, la gouvernance des données et la gestion de la qualité des données constituent les trois piliers clés d’une gestion des données de base efficace.

« Une discipline basée sur la technologie dans laquelle l’entreprise et l’organisation informatique collaborent pour garantir l’uniformité, la précision, l’administration, la cohérence sémantique et la responsabilité des ressources de données de base partagées officielles de l’entreprise. »

Définition de la gestion des données de base par Gartner

Gestion du Big Data

De nouveaux types de bases de données et d’outils ont été développés pour gérer le Big Data : d’énormes volumes de données structurées, non structurées et semi-structurées inondent les entreprises aujourd’hui. Outre les infrastructures basées sur le Cloud et les techniques de traitement hautement efficaces mises en place pour gérer le volume et la vitesse, de nouvelles approches ont vu le jour pour interpréter et gérer la variété de données. Pour que les outils de data management puissent comprendre et utiliser différents types de données non structurées, par exemple, de nouveaux processus de prétraitement permettent d’identifier et de classer les éléments de données en vue de faciliter leur stockage et leur extraction.

Intégration des données

L’intégration des données consiste à intégrer, transformer, combiner et mettre à disposition les données à l’endroit et au moment où les utilisateurs en ont besoin. Cette intégration s’effectue dans l’entreprise et au-delà, chez les partenaires et dans les cas d’utilisation et les sources de données tierces, pour répondre aux besoins de consommation de données de toutes les applications et de tous les processus de gestion. Les techniques utilisées incluent le déplacement des données en masse/par lots, l’extraction, la transformation, le chargement (ETL), la capture des données de modification, la réplication des données, la virtualisation des données, l’intégration des données de streaming, l’orchestration des données, etc.

Gouvernance, sécurité et conformité des données

La gouvernance des données est un ensemble de règles et de responsabilités visant à garantir la disponibilité, la qualité, la conformité et la sécurité des données dans toute l’organisation. Elle définit l’infrastructure et désigne les collaborateurs (ou postes) au sein d’une organisation dotés du pouvoir et de la responsabilité nécessaires pour assurer le traitement et la sauvegarde de types de données spécifiques. La gouvernance des données est un aspect clé de la conformité. Alors que les mécanismes de stockage, de traitement et de sécurité sont gérés par les systèmes, la gouvernance des collaborateurs permet de s’assurer que les données sont exactes, correctement gérées et protégées avant d’être entrées dans les systèmes, lorsqu’elles sont utilisées, puis lorsqu’elles sont extraites des systèmes à d’autres fins d’utilisation et de stockage. La gouvernance détermine comment les responsables utilisent les processus et les technologies pour gérer et protéger les données.

La sécurité des données est bien évidemment une préoccupation majeure dans notre monde actuel constamment menacé par les pirates informatiques, les virus, les cyberattaques et les violations de données. Bien que la sécurité soit intégrée dans les systèmes et les applications, la gouvernance des données garantit que ces systèmes sont correctement configurés et administrés pour protéger les données, et que les procédures et les responsabilités sont appliquées pour assurer leur protection en dehors des systèmes et de la base de données.

Business Intelligence et analyses

La plupart des systèmes de data management, sinon tous, incluent des outils de reporting et d’extraction des données de base, et beaucoup d’entre eux intègrent ou sont fournis avec de puissantes applications d’extraction, d’analyses et de reporting. Les applications d’analyses et de reporting sont également disponibles auprès de développeurs tiers et sont presque toujours incluses dans le groupe d’applications en tant que fonctionnalité standard ou en tant que module complémentaire facultatif pour des fonctionnalités plus avancées.

La puissance des systèmes de data management actuels réside, dans une large mesure, dans les outils d’extraction ad hoc qui permettent aux utilisateurs disposant d’un minimum de formation de créer leurs propres extractions de données à l’écran et d’imprimer des rapports en bénéficiant d’une grande flexibilité dans la mise en forme, les calculs, les tris et les résumés. En outre, les professionnels peuvent utiliser ces outils ou des jeux d’outils d’analyses plus avancés pour aller encore plus loin en termes de calculs, comparaisons, mathématiques abstraites et mises en forme. Les nouvelles applications analytiques permettent de relier les bases de données traditionnelles, les entrepôts de données et les lacs de données pour intégrer le Big Data aux données des applications de gestion en vue d’améliorer les prévisions, les analyses et la planification.


Qu’est-ce qu’une stratégie de gestion des données d’entreprise et quelle est son utilité ?

De nombreuses entreprises se sont montrées passives dans leur approche de stratégie de data management en acceptant ce que leur fournisseur d’applications de gestion avait intégré dans leurs systèmes. Mais cela ne suffit plus. Avec l’explosion actuelle des données et leur importance accrue dans le fonctionnement de toute entreprise, il devient indispensable d’adopter une approche plus proactive et plus globale du data management. D’un point de vue pratique, cela implique de définir une stratégie des données visant à :

  • identifier les types de données spécifiques utiles à votre entreprise ;
  • attribuer des responsabilités pour chaque type de données ; et
  • définir des procédures régissant l’acquisition, la collecte et la gestion de ces données.

La mise en œuvre d’une infrastructure et d’une stratégie de gestion des données d’entreprise offre notamment l’avantage de fédérer l’entreprise, en coordonnant toutes les activités et décisions à l’appui de ses objectifs, à savoir offrir des produits et des services de qualité de manière efficace. Une stratégie globale de data management et une intégration transparente des données permettent de décloisonner les informations. Elles aident chaque service, responsable et employé à mieux comprendre sa contribution individuelle à la réussite de l’entreprise, et à adopter des décisions et des actions alignées sur ces objectifs.


Évolution du data management

La gestion efficace des données joue un rôle clé dans la réussite des entreprises depuis plus de 50 ans : elle permet d’améliorer la précision du reporting, de repérer les tendances et de prendre de meilleures décisions pour favoriser la transformation numérique et exploiter les nouvelles technologies et les nouveaux modèles de gestion. Les données représentent aujourd’hui une nouvelle forme de capital et les organisations visionnaires sont toujours à l’affût de nouveaux moyens de les exploiter à leur avantage. Ces dernières tendances en matière de data management méritent d’être surveillées et peuvent être pertinentes pour votre entreprise et votre secteur d’activité :

  • Structure de données : la plupart des entreprises disposent aujourd’hui de différents types de données déployées sur site et dans le Cloud, et utilisent plusieurs systèmes de gestion de bases de données, outils et technologies de traitement. Une structure de données, qui est une combinaison personnalisée d’architecture et de technologie, utilise une intégration et une orchestration dynamiques des données pour permettre un accès et un partage transparents des données dans un environnement distribué.
  • Data management dans le Cloud :de nombreuses entreprises se sont mises à migrer tout ou partie de leur plateforme de gestion des données dans le Cloud. Le data management dans le Cloud offre tous les avantages du Cloud, notamment l’évolutivité, la sécurité avancée des données, l’amélioration de l’accès aux données, les sauvegardes automatisées et la restauration après sinistre, les économies de coûts, etc. Les solutions de base de données Cloud et base de données en tant que service (DBaaS), les entrepôts de données Cloud et les lacs de données Cloud montent en puissance.
  • Data management augmenté :c’est l’une des dernières tendances. Identifiée par Gartner comme une technologie au potentiel perturbateur d’ici 2022, la gestion des données augmentée exploite l’IA et l’apprentissage automatique pour donner aux processus de gestion la capacité de s’autoconfigurer et s’autorégler. Le data management augmenté automatise tout, de la qualité des données et de la gestion des données de base jusqu’à l’intégration des données, ce qui permet au personnel technique qualifié de se concentrer sur des tâches à plus forte valeur ajoutée.

« D’ici 2022, les tâches manuelles de data management seront réduites de 45 % grâce à l’apprentissage automatique et à la gestion automatisée des niveaux de service. »

Gartner

  • Analyse augmentée : l’analyse augmentée, une autre tendance technologique de pointe identifiée par Gartner, est en train d’émerger. L’analyse augmentée exploite l’intelligence artificielle, l’apprentissage automatique et le traitement du langage naturel (TLN) pour rechercher automatiquement les informations les plus importantes, mais aussi pour démocratiser l’accès aux analyses avancées afin que tous les collaborateurs, et pas uniquement les experts en Big Data, puissent interroger leurs données et obtenir des réponses d’une manière naturelle et conversationnelle.

Découvrez d’autres termes et tendances en matière de data management.


Synthèse

L’information est dérivée des données et si elle synonyme de pouvoir, cela signifie que la gestion et l’exploitation efficaces de vos données pourraient représenter une formidable opportunité de croissance pour votre entreprise. Les responsabilités en matière de data management et le rôle des analystes de bases de données (DBA) évoluent vers un modèle d’agent du changement, qui favorise l’adoption du Cloud, exploite les nouvelles tendances et technologies et apporte une valeur stratégique à l’entreprise.


Pictogramme qui représente un entrepôt de données

Solutions de data management et de bases de données

Découvrez comment SAP peut vous aider à gérer, administrer et intégrer vos données d’entreprise pour disposer d’analyses fiables et prendre des décisions avisées.

En savoir plus


Publié en anglais sur insights.sap.com

The post Qu’est-ce que le data management ? appeared first on SAP France News.

Source de l’article sur sap.com

SAP SE (NYSE : SAP) a annoncé aujourd’hui l’acquisition d’AppGyver Oy, un pionnier des plateformes de développement no-code (sans code) qui permettent aux utilisateurs sans compétences de codage de créer des applications pour des usages web et mobile.

Grâce à cette acquisition, SAP est mieux à même d’aider ses clients et partenaires à adapter efficacement leurs systèmes informatiques à leurs besoins spécifiques et à optimiser la convivialité de leurs applications. Les solutions d’AppGyver feront partie de la SAP Business Technology Platform. Elles élargiront l’offre de SAP dans le domaine de l’intelligence des business process et viendront compléter l’offre low-code de SAP fournie par le partenaire Mendix Tech BV, qui fait partie de Siemens AG.

« AppGyver nous aide à étendre nos capacités no-code et à établir une offre complète dans ce domaine », a déclaré Michael Weingartner, président de SAP Business Technology Platform Core, SAP. « À l’avenir, nous pouvons proposer une gamme complète d’outils de développement d’applications simples et intégrés qui permettent aux clients, aux partenaires et à nos propres équipes d’améliorer l’automatisation des processus et de renforcer l’expérience utilisateur des applications SAP. En ajoutant les solutions d’AppGyver à nos propres capacités no-code, nous facilitons la création de workflows, de formulaires, l’automatisation des processus robotisés et la gestion des cas légers. »

Cette acquisition élargit la nouvelle offre de SAP, RISE with SAP, dont la SAP Business Technology Platform et l’intelligence des business process sont des éléments clés. RISE with SAP aide les entreprises à réaliser des transformations business globales qui les rendent résilientes, agiles et intelligentes.

SAP et AppGyver ont convenu de ne pas divulguer le prix d’achat ou d’autres détails financiers de la transaction.

Visitez le SAP News Center. Suivez SAP sur Twitter @SAPNews.

The post SAP acquiert AppGyver, le pionnier du développement no-code appeared first on SAP France News.

Source de l’article sur sap.com

SAP France a été reconnu comme 2nd meilleur employeur de France pour 2021 par le Top Employers Institute. Le leader du logiciel d’entreprise d’origine Européenne progresse cette année de 4 places et se voit certifié pour la 9ème année consécutive au niveau national.

SAP est ravi d’être à nouveau certifié comme employeur de choix, en particulier dans un environnement difficile qui a bouleversé les normes personnelles et professionnelles. En 2021, l’entreprise reste plus que jamais engagées envers ses collaborateurs : continuer à développer des politiques de travail flexibles; aider les employés à maintenir leur bien-être physique et mental; investir dans l’apprentissage et le développement; évoluer vers un lieu de travail encore plus inclusif; et continuer à attirer les meilleurs talents et les plus diversifiés.

« L’expérience collaborateur figure au cœur des priorités de l’entreprise. Notre conviction fondamentale est que les équipes les plus diversifiées fournissent les résultats les plus innovants. Chaque jour, nous nous efforçons de rendre notre lieu de travail plus inclusif et de favoriser un environnement où les collaborateurs  peuvent se développer tout ayant un impact positif sur le monde qui nous entoure », déclare Caroline Garnier, Directrice des Ressources Humaines de SAP France.

Les organisations certifiées Top Employers s’engagent à fournir le meilleur environnement de travail possible à leurs collaborateurs à travers des pratiques RH innovantes qui privilégient l’humain.

SAP également reconnu comme l’un des meilleurs employeurs mondiaux en 2021

SAP a également a été reconnu comme Global Top Employer et se classe parmi les 16 premières entreprises au monde pour ses politiques et pratiques exceptionnelles en matière de ressources humaines. C’est la quatrième année consécutive que l’entreprise reçoit ce prix.

De plus, l’Amérique du Nord et l’Europe ont obtenu le statut de Top Employer régional. Avec des bureaux dans 130 pays, SAP est une entreprise mondiale et se réjouit que ses pratiques en matière de ressources humaines aient été reconnues dans les pays suivants : Belgique, Brésil, Canada, Chine, République tchèque, France, Allemagne, Grèce, Inde, Israël, Italie , Mexique, Pologne, Portugal, Russie, Afrique du Sud, Espagne, Turquie, Royaume-Uni et États-Unis.

Selon Sabine Bendiek , directrice des ressources humaines et membre de la direction de SAP SE, «La transformation numérique commence avec les gens. Je suis fier que l’équipe RH de SAP se soit adaptée aux vents contraires de 2020 avec agilité, résilience et empathie. En augmentant nos effectifs dans les périodes difficiles, en garantissant les niveaux d’engagement les plus élevés et en accordant la priorité à la santé de nos employés, l’équipe des ressources humaines s’est avérée être un véritable catalyseur de la réussite de l’entreprise. »

Être reconnu comme l’un des meilleurs employeurs mondiaux 2021 témoigne de la culture et des opportunités uniques qui font de SAP un lieu de travail formidable.

Le programme Top Employers Institute certifie les entreprises en fonction de leur participation et de leurs résultats à l’enquête « HR Best Practices Survey ». Cette enquête couvre 6 grands domaines RH, répartis en 20 thématiques telles que la stratégie de gestion des talents, l’environnement de travail, le Talent Acquisition, la formation et le développement des compétences, le bien-être au travail, ou encore la diversité et l’inclusion.

Pour en savoir plus sur la reconnaissance que SAP a obtenue en tant que lieu de travail de premier plan, en matière de diversité et d’inclusion, pour l’équilibre entre vie professionnelle et vie privée, et plus encore, visitez la section Prix des employeurs de sap.com.

Suivez # LifeAtSAP sur Instagram , Facebook , Twitter et YouTube pour recevoir régulièrement des nouvelles et des mises à jour sur les carrières chez SAP.

 

À propos du Top Employers Institute

Le Top Employers Institute est l’autorité internationale qui certifie l’excellence des pratiques RH. Nous contribuons à accélérer l’impact de ces pratiques pour améliorer le monde du travail. Le programme de certification du Top Employers Institute permet aux organisations participantes d’être validées, certifiées et reconnues comme des employeurs de référence. Créé il y a 30 ans, le Top Employers Institute a certifié plus de 1 600 organisations dans 120 pays/régions. Ces Top Employers certifiés ont un impact positif sur les vies de plus de 7 millions de collaborateurs à travers le monde.

Top Employers Institute. For a better world of work.

The post SAP reconnu 2ème meilleur employeur au classement Top Employer France appeared first on SAP France News.

Source de l’article sur sap.com

Every week users submit a lot of interesting stuff on our sister site Webdesigner News, highlighting great content from around the web that can be of interest to web designers.

The best way to keep track of all the great stories and news being posted is simply to check out the Webdesigner News site, however, in case you missed some here’s a quick and useful compilation of the most popular designer news that we curated from the past week.

34 Impressive Examples of Fullscreen Navigation Menus

 

Radix Icons – An Open Source Crisp Set of 15×15 Icons

 

Nocode – Turn Google Docs into a Website

 

How to Design a Great Dashboard for your UI

 

The Most Futura. Ever.

 

5 Mistakes to Avoid When Designing your Nonprofit Website

 

UCalc – Functional Calcs and Forms

 

AreYouInterested – A Super-Simple Landing Page Builder for Bulk Idea Validation

 

Unlearning to Learn Design

 

Just FYI: Acronyms are Hurting your UX and ROI

 

3 Concrete Steps to Learning a Programming Language

 

MathJax – Beautiful and Accessible Math in all Browsers

 

What is a WordPress Child Theme?

 

How to Create a UX Writing Portfolio

 

A Step-By-Step Guide to User Experience Research

 

5 Most Common Mistakes in FinTech Design

 

31 Ways to Improve your Web Design Skills

 

Designing the Ada Lovelace Hashflag Emoji

 

Powered by Buttons – An Acquisition Channel Nobody is Talking About

 

Top 10 Tools for Managing Remote Teams Efficiently

 

Email Design Accessibility: Why it is Important to Improve it

 

Why Web Design Client Referrals Aren’t a Slam-Dunk

 

Host Rider: A Game for Learning CSS Flexbox

 

Stanza – Learn Coding Concepts Faster

 

How to Present your Logos to the Client

 

Want more? No problem! Keep track of top design news from around the web with Webdesigner News.

Source


Source de l’article sur Webdesignerdepot

WALLDORF SAP SE (NYSE : SAP) et E.ON SE ont annoncé un nouveau partenariat visant à développer une plateforme basée sur la solution SAP S/4HANA Utilities. La plateforme permettra d’adapter à l’avenir du secteur les processus de facturation et les échanges d’informations avec les acteurs du marché de l’énergie.

SAP et le fournisseur d’énergie E.ON prévoient de développer une nouvelle plateforme de processus et de technologies conçue pour l’exploitation du réseau d’E.ON. Ensemble, les deux partenaires de premier plan souhaitent établir une nouvelle norme dans le secteur des réseaux électriques en Allemagne. E.ON a pour objectif d’utiliser les solutions cloud de SAP (SAP S/4HANA) pour améliorer l’efficacité et la cohérence des processus centraux relatifs à la facturation et à l’échange d’informations au sein du groupe. Ainsi, les fournisseurs d’énergie, les opérateurs de réseau et les exploitants de compteurs du groupe E.ON pourront partager des informations plus rapidement et facilement, et avec plus de précision. Les processus seront normalisés et les différents systèmes de facturation de l’énergie ainsi que les échange de données des centres régionaux d’E.ON seront migrés vers la nouvelle plateforme. La cohérence des données permettra à l’entreprise de déployer des solutions standard, de suivre les meilleures pratiques et de réduire les coûts liés au développement de logiciels personnalisés. Les clients du réseau d’E.ON y verront également des avantages. Des processus allégés et normalisés permettront à l’entreprise de répondre de manière encore plus rapide et efficace aux demandes des clients.

La décision en faveur de l’adoption de cette nouvelle technologie découle de l’intégration d’Innogy SE, une entreprise du secteur de l’énergie, au sein du groupe E.ON. Le plan de développement du réseau d’E.ON est d’établir des processus de facturation et des systèmes informatiques standard dans toutes ses entités. Les premiers bénéfices du projet, c’est-à-dire l’optimisation des processus, sont attendus dès le milieu de 2022. La mise en œuvre de solutions cloud innovantes devrait permettre à long terme au groupe de réduire ses coûts de 40 %.

Dans le cadre de ses activités, et plus particulièrement de l’exploitation du réseau, E.ON doit se conformer aux réglementations établies par l’Agence fédérale Allemande des réseaux, la Bundesnetzagentur. Le partenariat avec SAP et les possibilités offertes par la nouvelle plateforme, modulable et stable, faciliteront le respect des nouvelles réglementations, telles que les formats d’échange de données standard. De plus, les processus métier exécutés sur la plateforme cloud SAP peuvent être facilement étendus. Grâce à son évolutivité, la plateforme offre également des possibilités d’innovation.

« Notre partenariat avec SAP nous permet de repenser les processus et les structures, surtout après l’acquisition d’Innogy », explique Thomas König, membre du conseil d’administration et responsable des réseaux énergétiques, E.ON SE. « Ce projet va établir une nouvelle norme sur le marché. Les capacités d’automatisation et de normalisation de la nouvelle plateforme vont considérablement améliorer l’efficacité de nos processus. »

« Ce partenariat rapproché avec E.ON n’est pas seulement un excellent exemple de la façon dont la technologie peut simplifier la prise de décision des entreprises, promouvoir de nouveaux modèles économiques et générer une valeur durable », déclare Christian Klein, CEO de SAP SE. « Cette décision est également le signe d’un engagement fort envers les solutions Industry Cloud de SAP et démontre qu’en matière de transformation numérique, nous sommes le partenaire de choix de nos clients. »

The post SAP et E.ON vont développer une nouvelle plateforme de technologies et de processus appeared first on SAP France News.

Source de l’article sur sap.com