This article is an excerpt from the book Machine Learning with PyTorch and Scikit-Learn from the best-selling Python Machine Learning series, updated and expanded to cover PyTorch, transformers, and graph neural networks.

Broadly speaking, graphs represent a certain way we describe and capture relationships in data. Graphs are a particular kind of data structure that is nonlinear and abstract. And since graphs are abstract objects, a concrete representation needs to be defined so the graphs can be operated on. Furthermore, graphs can be defined to have certain properties that may require different representations. Figure 1 summarizes the common types of graphs, which we will discuss in more detail in the following subsections:
Common types of graph

Source de l’article sur DZONE

L’assistance proposée par ANKAA PMO

ANKAA PMO présent depuis plus de 20 ans sur le marché des services IT, accompagne les DSI dans leur recherche de compétences pour des besoins de renforts en mode régie ou l’externalisation de projets.
Vous souhaitez plus d’information ? Cliquez ici